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Abstract—In dynamic networks, links are annotated with
timestamps showing the emerging time and the link prediction
problem is to infer the future links in networks. Universal link
prediction methods are highly demanded in various applications,
which require universal link features that are feasible for multiple
kinds of network topological structures and capable to address
the difference of links with different timestamps. In this paper, we
propose a novel link feature called Structure Subgraph Feature
(SSF). The SSF is an outstanding link feature that is feasible
to various dynamic networks due to the following superiorities:
(1) the proposed structure subgraph is so far the most effective
manner to represent surrounding topological features of target
link and (2) the normalized influence well specifies the influence
of multiple links and different timestamps in structure subgraph.
We finally propose two link prediction methods by applying SSF
to a linear regression model and a neural machine. Experimental
results on real-world dynamic network datasets indicate that the
SSF-based methods consistently provide top-class performance
on various dynamic networks.

Index Terms—dynamic networks, link prediction, structure
subgraph

I. INTRODUCTION

Numerous networks in real world are dynamic, which means

the links in networks emerge at different time. For example,

the coauthor network between scholars is a typical kind of

dynamic networks, because the coauthor relationships are

formed in different years. For theoretical modeling and an-

alyzing in this paper, links in dynamic networks are annotated

with timestamps indicating the time they emerged. Recently

link prediction attract much interest in dynamic networks,

which aims to infer the future links of a given network.

Link prediction has plentiful applications in various areas,

such as personalized recommendation in social or e-commerce

networks [1], [2], link recovery in knowledge graphs [3], entity

resolution [4], user behavior prediction [5] and missing protein

interaction discovery in biochemical reaction networks [6] .

Due to the increasing demand from various application in

different dynamic networks, it is imperative to design universal

This work is partially supported by National Science Foundation of China
(Grant No. 61632019 and No. 61572096).† corresponding author.

link prediction methods that are feasible for various dynamic

networks.

The basic idea to infer whether a link will be created is

to measure the similarity or closeness between the two end

nodes of the link [7]. State-of-the-art ranking models [8]–

[11] or classification models [12]–[14] have developed various

features to measure or represent the closeness. Some features

for ranking models [1], [7], [9], [15]–[19] directly calculate

the closeness score between two nodes. While the feature for

classification models [14] is defined as a feature vector that

represents the link based on surrounding structures. Table I

presents the most popular link features for link prediction.

The existing features either lack universal applicability to

different kinds of network structures, or only focus on static

networks where the links have no difference in emerging

time [20], [21]. Therefore, none of them is universal for

various network structures and applicable to link prediction

in dynamic networks.

The problem of the features that are not feasible for multiple

kinds of network structures comes from the demerit that

only utilize one or two specific kinds of network topological

information. For example, Common Neighbor (CN) [7] only

considers the number of common neighbors of two end nodes,

while Preferential Attachment (PA) [15] only calculates the

degree of the two end nodes. Therefore, such kind of features

may make improper evaluation about the closeness of the end

nodes and hence make wrong links prediction results.

Figure 1(a) shows two surrounding networks of two target

links, A − B and X − Y , for example in Twitter network.

The nodes and links represent users and comments between

users (directions are ignored), respectively. This network is

a typical dynamic network, where the links are annotated

with timestamps showing the time of making comments, and

multiple links are allowed between two nodes. We aim to

predict whether a link will be created between A and B or X
and Y . A, B, and C have high degrees in the network, which

semantically means they are celebrities and many fans make

comments to their tweets. While X and Y are more likely

to be the common users and both of them are the fans of C.
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TABLE I: Comparison of Link Features for Link Prediction

feature name formulas universal dynamic
CN [7] |Γx ∩ Γy| × ×
PA [15] |Γx| · |Γy| × ×
Jac. [16]

|Γx∩Γy |
|Γx∪Γy | × ×

AA [1]
∑

z∈Γx∩Γy

1
log|Γz | × ×

RA [17]
∑

z∈Γx∩Γy

1
|Γz | × ×

RW [18] pt
x = MT pt−1

x × ×
Katz [19]

∑∞
l=1 β

l(Al)xy × ×
rWRA [9]

∑
z∈Γx∩Γy

Wxz ·Wyz

Sz
× √

WLF [14] link feature vector
√ ×

SSF (our work) link feature vector
√ √

Notes: “universal” means the feature is applicable to multiple
kinds of network structures, “dynamic” means the feature can
handle the different emerging time of links in dynamic networks.
Γx denotes the neighbor set of node x, | · | is the size of a set. W
is a weighted adjacency matrix, where Wxz is the link weight
from x to z and Sz =

∑
z′∈Γz

Wzz′ . Random walk is defined
in a recursive manner, M is the transition probability matrix
defined by adjacency matrix A normalized by rows, where the
entry Mxy = Axy/

∑
k∈Γx

Axk. β is a damping factor.

Since both the two celebrities A and B frequently interact with

another celebrity C, it is of higher probability that A and B
will make comments to each other than the two C’s common

fans X and Y do in the future. That is, link A−B has higher

probability to be created than link X − Y .

Figure 1(b) presents several popular link features that utilize

the surrounding structures to measure the closeness between

A−B and X−Y . Only utilizing several specific kinds of infor-

mation, common neighbors (CN) [7], Adamic-Adar (AA) [1],

resource allocation (RA) [17] and reliable weighted resource

allocation (rWRA) [9] can not differentiate the closeness of

A − B and X − Y , which results in predicting the same

probability of A − B and X − Y to be created. Although

preferential attachment (PA) [15] and Jaccard index (Jac.) [16]

show the difference of surrounding structures between A−B
and X − Y , they still ignore the fact that C is a celebrity

with high degree and plays important role to the emergence

of A−B and X − Y .

Zhang and Chen [14] propose a neural machine classifica-

tion model which represents the topological information of K
neighbor nodes of a target link as a feature vector (we denoted

the feature as WLF in this paper).WLF utilizes all kinds

of topological information encoded in the structure of sur-

rounding fixed K nodes, which makes it applicable to various

networks. However, WLF is proposed for static networks, and

in many real-world networks, WLF still not effective enough

to encode topological information. An example is shown in

Figure 1. When K = 6, WLF can only utilize the structure

information of surrounding 6 nodes of A − B and X − Y .

WLF can not differentiate the surrounding structures of A−B
and X − Y and ignores the roles of A, B and C in the

networks. Manually increasing K to involve more nodes into

the enclosing subgraph may solve the problem in this example,

but it is hard to find a proper K for all networks.

In order to utilize topological structure and represent topo-

logical information in dynamic networks more efficiently, in

this paper we propose the structure subgraph which is so

far the most effective manner to represent the surrounding

topology of target links. The nodes in a structure subgraph are

called structure nodes, and a structure node is defined as an

aggregation of the nodes with the same structure in a specific

structure subgraphs (K=6)

enclosing subgraphs (K=6)

calculate SSF

(a) original surrounding
network structure of
link A-B and X-Y

PA/Jac.

WLF

rWRA

AA/RA

(b) surrounding structure utilizedby traditional
features for linkA-BandX-Y respectively

CN

SSF

no special
process calculate WLF

(c) surrounding structureutilizedbyWLF thoughenclosing subgraph

(d) surrounding structure utilizedbySSF though structuresubgraph

normalization

:timestamp

SSF

no lization

calcul

normalization

normalized structure subgraphs (K=6)

Fig. 1: Comparison of network structure utilized by various link features

1211

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on March 14,2024 at 21:02:10 UTC from IEEE Xplore.  Restrictions apply. 



surrounding network structure. Figure 1(d) shows the structure

subgraphs constructed for A − B and X − Y when K = 6.

From Figure 1(d), we can learn that the structure subgraph is

the only one that can represent all the surrounding topological

information of A−B and X − Y .
On the other hand, the different timestamps of links and

multiple links between nodes are important characteristics in

dynamic networks, which brings different influence to the

emergence of new links. It is obvious that the links emerged

in farther history have less influence to the emergence of

new links at present time, and the connections of two nodes

with multiple links bring more influence than those with one

link. To address these characteristics in dynamic networks,

in this paper we first apply an exponential influence decay

function to specify the influence of every single link with

different timestamps. Since the nodes in the the same structure

node plays the same role in networks, we further utilize

a strategy to specify the influence of multiple links which

sums all influence of links between two structure nodes as

one normalized influence. Then, we propose the Structure

Subgraph Feature (SSF) which is a feature vector calculated

by unfolding the adjacency matrix of the normalized structure

subgraph where the influence of links are all normalized.

Figure 1(d) illustrates the process of obtaining SSF, where

α and β are the values of normalized influence.
Finally, we propose two link prediction methods by applying

the SSF to a linear regression model and a neural machine.

Due to the abundant topological information encoded in SSF,

the SSF-based methods are universally applicable for various

network structures in dynamic networks. The main contribu-

tions of this paper are summarized as follows:

• We propose the structure subgraph which has outstanding

ability to represent the surrounding network structures of

a target link. It provides the theoretical foundation for the

proposed link feature and link prediction methods.

• We integrate all the influence of links between two

structure nodes into a normalized influence. The normal-

ized influence can simultaneously specifies the effect of

multiple links between two nodes and different emerging

time of links in dynamic networks.

• We further propose a feature vector called Structure

Subgraph Feature (SSF) by unfolding the adjacency ma-

trix of structure subgraph where the influence of links are

normalized. In stead of capturing only several kinds of

information from the surrounding structures, SSF can au-

tomatically encode the abundant topological information

from the structure subgraph into feature vectors, which

makes SSF consistently feasible for various dynamic

networks.

• We evaluate the superiority of SSF by applying it to a

linear regression model and a neural machine, namely SS-

FLR and SSFNM. Then we compare these two link pre-

diction methods with 11 baseline methods on 7 real-world

dynamic networks. The experimental results demonstrate

that the SSF-based methods outperform the baseline

methods and provide consistently top-class performance

for link prediction tasks in various dynamic networks.

The remainder of this paper is organized as follows. We

present related work in Section II. We formalize dynamic

networks and link prediction problem in Section III. Then

we propose structure subgraph and structure subgraph feature

in Section IV and Section V, respectively. In Section VI, we

conduct extensive experiments on real-world dynamic datasets.

Finally, we conclude this paper in Section VII.

II. RELATED WORK

Link prediction problem is studied in static networks ini-

tially [7], where the links are not annotated with timestamps

and networks are modeled as conventional graphs. Link predic-

tion problem in static networks are mostly studied as missing

link recovery that attempts to recover unknown links based

on the existing links. Link prediction problem is extended to

dynamic networks recent years that is to inferring future links

according to history links, which is also defined as temporal

link prediction problem [22], [23]. The different emerging

time of links in dynamic networks, makes the link prediction

problem in dynamic networks is more complex than it is in

traditional static networks.

The basic idea to evaluate the probability that two nodes

have links is to measure the similarity or closeness between

them. The similarity of nodes are mostly evaluated according

to the network structures around the nodes, such as CN,

PA etc. These similarity evaluation features can be applied

in unsupervised ranking model to select the top links with

higher feature values as predicting the links will emerge [11],

or can also constitute feature vectors and then be applied

into classification models. Lü et al. proposed local-path index

to characterize the node similarity based on the reachable

paths between two nodes [8]. Zhao et al. proposed several

reliable-route-based methods that introduce link weights into

similarity [9], making traditional methods like CN and RA

possible to deal with multiple links between nodes. Node

evolution theory is studied in [10] to evaluate the emerging

probability integrating both evolution perspectives to the link

emergence from two end nodes, and propose that links with

different surrounding structures should be applied with differ-

ent similarity evaluation feature.

There are also link prediction methods based on non-

negative matrix factorization which map the nodes into latent

feature space by factorizing the adjacency matrix of networks

into two latent feature matrices, and the predicted new network

is derived from the production of the latent feature matrices

[24]–[26]. Researchers make an assumption of consistency in

dynamic networks that dynamic networks transform smoothly

over time [27], [28]. Since the consistency can be maintained

through constrain factors in factorization, matrix factorization

based link prediction methods are widely applied in dynamic

network [28]. Yu et al. leverage the time-dependent matrix

factorization method which naturally expresses the evolving

network by learning a low rank representation of the underly-

ing adjacency matrix [28]. Gao et al. study the link direction

prediction problem and propose a latent matrix factorization
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method [23]. Yu et al. consider the future networks are the

function of time and introduce evolutionary network analysis

into link prediction that considers the network structure as

a function of time and is the first to study the link weight

prediction [29]. Graphlet transition based features are proposed

by [30] to form low-dimensional features of node pairs.

Deep learning models are introduced into link prediction re-

cently. Li et al. propose a framework based on boltzmann ma-

chine which predicts links based on individual transition vari-

ance and influence introduced by local neighbors [31]. Wang et

al. design a hierarchical Bayesian model to jointly model high-

dimensional node attributes and link structures [32]. Cukierski

et al. utilize random forest to separate real links from fake

links [33]. Neural machine is utilized to automatically learn

latent information from input feature vector [14]. A multi-

neural-network framework is propose for link prediction over

aligned networks that alleviates cold start problem in social

networks [34]. Ozcan et al. propose Nonlinear Autoregressive

Neural Network (NARX) to study link prediction in evolving

heterogeneous networks addressing the challenge of different

link types, different effects of various similarity measures and

nonlinear temporal evolution information [35].

III. PROBLEM FORMALIZATION

A dynamic network in a time period [t0, tn] contains con-

tinuously emerging links with timestamps. In other words,

the links with timestamps emerge as a stream. We create the

dynamic network from a blank graph and keep adding links

and the end nodes into the graph from the start of the stream.

Finally the dynamic network in time period [t0, tn] can be

represented by the graph as shown in Figure 2. In the graph,

each link is annotated by a timestamp to record the emerging

time, and multiple links are also allowed between nodes.

Fig. 2: An example of dynamic network

Definition 1: (Dynamic Network): A dynamic network is

a graph G = (V,E, L). V = {n1, n2, ..., nm} is the set of

nodes in the network; L = {l1, l2, ..., ls} is the set of different

timestamps in the network; E = {e1, e2, ..., ek} is the set of

links, where ek = (ni, nj , lk) is a triple denoting the link

between node ni and node nj at timestamp lk ∈ L .

Note that ei ∈ E and ej ∈ E may contain the same elements

in the situation that two nodes created multiple links at one

timestamp. We further define a period of dynamic network

G(tp,tq) in period [tp, tq), in which all the timestamps in

G(tp,tq) are within [tp, tq).

Definition 2: (Link Prediction Problem): Given a period of

dynamic network G(tp,tq) = (V,E′, L′) and a link set Ep,

where L′ = {lk|lk ∈ L; tp ≤ lk < tq}, E′ = {ek|ek =
(ni, nj , lk); ek ∈ E;ni, nj ∈ V ; lk ∈ L′} and Ep = {et|et =
(na, nb, lt);na, nb ∈ V ; lt = tq}, the link prediction problem

is to predict whether a target link et ∈ Ep will emerge.

In this paper, in order to evaluate the link prediction results,

we set l1 ≤ tp < tq = lt < ls and G(tp,tq) actually is a portion

of G, so that E contains the truth of whether et emerges or

not.

IV. STRUCTURE SUBGRAPH

In this section, we propose h-hop structure subgraph that

represents the surrounding network structures of a target link

et, then K-structure subgraph is proposed to encode the

topology within K different structure nodes selected from h-

hop structure subgraph and will be represented as structure

subgraph feature in next section.

A. H-hop Structure Subgraph

Preliminarily the distance from a node ni to a target link et
is defined as:

d(ni, et) = min(|P(ni, na)|, |P(ni, nb)|) (1)

where na and nb are two end nodes of link et, P(·, ·) denotes

the shortest path between two nodes, and |P(·, ·)| is the length

of the path.

We formally define the surrounding subgraph of a target

link et within h hop as the h-hop subgraph.

Definition 3: (h-hop Subgraph): Given a graph G(tp,tq) =
(V,E′, L′) , the h-hop subgraph of a given target link et is

defined as Gh→et = (Vh, Eh, L
′), where Vh = {ni|ni ∈

V ; d(ni, et) ≤ h}, Eh = {ek|ek = (ni, nj , lk); ek ∈
E′;ni, nj ∈ Vh; lk ∈ L′}.

In a h-hop subgraph, the nodes with the same structures

play same topological roles in the network and hence make

the same impact on the emergence of the target link. We

combine the nodes with the same structure into one structure

node and continue combining the structure nodes until there

are no structure nodes with the same structure in the structure

subgraph. To clearly define the structure subgraph, we first

define the structure nodes as follows.

Definition 4: (Structure Node): Given a h-hop subgraph

Gh→et = (Vh, Eh, L), and the sets of neighbor nodes of

two nodes ni ∈ Vh and nj ∈ Vh are denoted as Γni
and

Γnj , respectively, then ni and nj have the same structure iff

Γni = Γnj . A structure node Nx is defined as a set collecting

all the nodes that have the same structure in Gh→et . Specially,

the two end nodes na and nb of the target link et are special

structure nodes that only contain themselves.

For example, Figure 3(a) presents the 1-hop subgraph of

link A-B, we can learn that the nodes G, H and I have the

same structure because ΓG = ΓH = ΓI = {A}. Thus, G, H
and I are combined into one structure node N1 = {G,H, I}
in Figure 3(b).
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Algorithm 1 Structure Combination Algorithm

Input: Gh→et

Output: GSh→et

1: initialization step t← 0
2: Gt+1

Sh→et
= (V t+1

S , Et+1
S , L) ← Gh→et

3: create empty structure subgraph: GSt
h→et

= (V t
S , E

t
S , L)

4: while Gt
Sh→et

�= Gt+1
Sh→et

do
5: Gt

Sh→et
← Gt+1

Sh→et

6: reset Gt+1
Sh→et

to empty

7: for ni in V t
S do

8: if Γni
= Γnj

(nj ∈ Nx) then
9: add ni into Nx

10: else
11: create Nx = {ni}
12: add Nx into V t+1

S

13: end if
14: end for
15: update Et+1

S

16: end while
17: GSh→et

← Gt+1
Sh→et

18: return GSh→et

Structure
Combination

(a) -hop subgraph
of target link A-B

(b) -hop structure
subgraph of target link A-B

on

) h

Fig. 3: Simple example of subgraph and structure subgraph

Definition 5: (Structure Link): A structure link between

two structure nodes Nx and Ny is defined as a triple E =
(Nx,Ny, Ek), where Ek = {ek|ek = (ni, nj , lk); ek ∈
Eh, ni ∈ Nx;nj ∈ Ny; lk ∈ L′}. E represents all the links

connecting the nodes in Nx and Ny .

Definition 6: (h-hop Structure Subgraph): Given a h-hop

subgraph Gh→et of a target link et, the h-hop structure

subgraph of et is defined as GSh→et
= (VS , ES , L

′), where

VS = {N1,N1, ..,Np}; ES = {E1, E2, ..., Eq}; L is the set of

all timestamps.

Figure 3(b) presents the 1-hop structure subgraph of link

A-B, which is derived by combining the structures in 1-

hop subgraph. Algorithm 1 presents the details of structure

combination algorithm, which takes a h-hop subgraph as an

input and figure out a h-hop structure subgraph as an output.

In Algorithm 1, iterating all the nodes (Line 7 to 14)

takes maximum time of O(|V |2), and updating link set (Line

15) takes maximum time O(|E|). Thus the time complexity

of each inner loop (Line 7 to 15) is O(|E| + |V |2). Proof

by contradiction can easily demonstrate the loop (Line 4 to

16) actually need one step to converge. Therefore, the time

complexity of Algorithm 1 is O(|E|+ |V |2) = O(|V |2).
The size of input of Algorithm 1 determines the computation

cost. Since the input Gh→et is a h-hop subgraph which usually

contains nodes and links much less than |E| and |V |, it barely

reaches the worst case time complexity O(|E|+ |V |2).
Algorithm 1 can ensure all topological structures in a sub-

graph conserved in corresponding structure subgraph. There-

fore the h-hop structure subgraph is an equivalent representa-

tion of h-hop surrounding subgraph. The ability of structure

subgraph to conserve all topologies with much less nodes

make it possible to design a feature with much more efficient

manner to encode various topological information. Structure

subgraph also provides a novel perspective to the network

structure. From structure subgraphs, we can easily observe

what kinds of roles the nodes play around the target link,

which is not only useful in link prediction, but also meaningful

in other areas like social analysis and entity resolution.

B. K-Structure Subgraph

Although h-hop structure subgraph can be represented by

adjacency matrix as the link feature of et, the sizes of h-

hop structure subgraphs of links are usually different, causing

link features are represented in different length. To uniformly

extract features of the same size, we derive the K-structure

subgraph from the h-hop structure subgraphs. The h-hop

structure subgraphs of all target links are required to contain at

least K structure nodes, so that for each target link et, we can

select K structure nodes from its h-hop structure subgraph and

construct a structure subgraph with these K structure nodes,

whose adjacency matrix is of uniform size of K × K and

utilized to calculate the Structure Subgraph Feature (SSF) of

et.
Initially, h = 1, we derive 1-hop structure subgraph GS1→et

from 1-hop subgraph G1→et through Algorithm 1. If the

number of structure nodes of GS1→et
is less than K, namely

|VS | < K, then we continue increasing h to include more

nodes with different structure into h-hop subgraph Gh→et

and repeat extracting h-hop structure subgraph GSh→et
from

Gh→et , until the number of structure nodes of GSh→et
satisfies

|VS | ≥ K.

Next, we assign orders to all the structure nodes in GSh→et
.

The order of structure nodes determines which structure nodes

are selected. Note that the structure nodes that contain the

end nodes of a target link et must be selected. In this paper,

the Palette-WL algorithm [14] is adopted to ensure the order

numbers of the two end nodes of et always be 1 and 2,

and structure nodes that farther to et will have higher order

numbers. The detail of the algorithm is shown in Algorithm 2.

The order of a structure node N is denoted as C(N ), so

C(Nx) = 1 and C(Ny) = 2 for Nx = {na}, Ny = {nb},
where na and nb are the two end nodes of et.

The top K structure nodes and the structure links between

them constitute the K-structure subgraph of a target link et
which is defined as Definition 7.
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(a) -hop subgraph of
target link A-B

and choose top
structure nodes

(b) -structure
subgraph of target link A-B

Normalization

unfold into a vector

(c) Normalized -structure
subgraph of target link A-B

(d) and the subgraph structure
feature ofA-B

calculate

p
es

0 0 0.9
75

0.4
93 0

0.9
75 0 0.3

58

0 0
0

Fig. 4: Illustration of extracting structure subgraph feature of

link A-B when K = 5

Definition 7: (K-structure subgraph): Given a h-hop struc-

ture subgraph GSh→et
= (VS , ES , L

′) that satisfies |VS | ≥ K,

the K-structure subgraph is a part of GSh→et
that con-

tains K structure nodes and formally defined as GK
Sh→et

=

(V K
S , EK

S , L′). V K
S = {Nx|Nx ∈ VS ;C(Nx) ≤ K} and

EK
S = {Ek|Ek = (Nx,Ny, Ek); Ek ∈ ES ;Nx,Ny ∈ V K

S }
where Ek = {ek|ek = (ni, nj , lk);ni ∈ Nx;nj ∈ Ny; lk ∈
L′}.

In Figure 4(a), when K = 5, since GS1→(A−B)
exactly

contains 5 structure nodes, all the structure nodes are ordered

and selected to construct the 5-structure subgraph G5
S1→(A−B)

as shown in Figure 4(b), which is the same as GS1→(A−B)
in

this simple example.

Selecting only K nodes from the h-hop structure subgraph

may cause information lost, however in real application, K is

usually set not less than 10, which is sufficient for differen-

tiating links at most case. The experiments in this paper also

demonstrate that the best performance of link prediction on

real-world dynamic networks falls around K = 10, which

indicates that it is not necessary to encode all topological

information of h-hop structure subgraph into link feature.

V. STRUCTURE SUBGRAPH FEATURE

The K-structure subgraph cannot be directly represented

as normal adjacency matrix, because the there are multiple

links with different timestamps between structure nodes. The

different number of history links between two structure nodes

and the different emerging time of these links make the relation

between the two structure nodes have different influence

on the emergence of new links. We elaborately design an

Algorithm 2 The Palette-WL Algorithm

Input: GSh→et
, et

Output: C : the order list for all Nx ∈ VS

1: initialize the order of all Nx ∈ VS increasingly with the

distance to et.
2: while C(Ni) is not converged do
3: for Nx in VS do
4: h(Nx)← C(Nx) +

∑
Np∈ΓNx

log(P (C(Np)))

�∑Nq∈VS
log(P (C(Nq)))�

(where P (n) is the nth prime number)

5: end for
6: rank the node by h(Nx) in ascending order

7: C(Nx)← the order of Nx

8: end while
9: return C

NO

YES

unfold

NO

ES

and choose top
structure nodes

Fig. 5: Illustration of the whole process of SSF feature

extraction (K = 10)

adjacency matrix that specifies the influence of multiple links

and different emerging time in K-structure subgraph GK
Sh→et

,

and propose Structure Subgraph Feature (SSF) that is effective

in dynamic networks.

A. Normalized K-structure Subgraph

Since et is a future link to be predicted, we uniformly set

the timestamp of et as lt = tq . The influences of history

links decay with the time since links in farther historical time

will have less impact on the emergences of links at present

time. According to [28], the remaining influence f(lt, ls) of a
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history link e = (ni, nj , ls) at present time lt can be calculated

according to their timestamps as:

f(lt, ls) = exp−θ(lt−ls), (2)

where θ ∈ (0, 1) is a damping factor to control the speed of

decay. In this paper, we uniformly set θ = 0.5 to obtain an

average performance [28].

Since the nodes contained in a same structure node play the

same role in the network topology and influence the emergence

of target link et in the same way, the influence of all the links

between two structure nodes can be integrated as a normalized

influence of one link. For a structure link (Nx,Ny, Ek) ∈ EK
S

in a K-structure subgraph GK
Sh→et

= (V K
S , EK

S , L′), Ek =

{ek|ek = (ni, nj , lk);ni ∈ Nx;nj ∈ Ny; lk ∈ L′} containing

all links between the nodes in Nx and Ny can be normalized

to Ẽk = {(ñi, ñj , l̃k)} which only contains one link. ñi and

ñj are two arbitrary nodes in Nx and Ny , respectively. l̃k is

the normalized influence of all ek ∈ Ek, which is defined as

Definition 8.

Definition 8: (Normalized Influence:) Given a link set Ek =
{ek|ek = (ni, nj , lk);ni ∈ Nx;nj ∈ Ny; lk ∈ L′} where

Nx,Ny ∈ V K
S , l̃k is the normalized influence of all the links

ek ∈ Ek which is calculated as:

l̃k =
∑

(ni,nj ,lk)∈Ek

f(lt, lk) =
∑

(ni,nj ,lk)∈Ek

exp−θ(lt−lk).

(3)

When all the links between arbitrary two structure nodes in

K-structure subgraph GK
Sh→et

are normalized to one link, the

original GK
Sh→et

is transformed into a normalized K-structure

Subgraph which is defined as Definition 9.

Definition 9: (Normalized K-structure Subgraph): Given

a K-structure subgraph GK
Sh→et

= (V K
S , EK

S , L′), the nor-

malized K-structure subgraph is defined as G̃K
Sh→et

=

(Ṽ K
S , ẼK

S , L̃′). Ṽ K
S = V K

S , ẼK
S = {Ẽk|Ẽk =

(Nx,Ny, Ẽk);Nx,Ny ∈ Ṽ K
S } where (Nx,Ny, Ẽk) is derived

from (Nx,Ny, Ek) by normalizing Ek to Ẽk = {(ñi, ñj , l̃k)}.
L̃′ is a set collecting all l̃k.

Figure 4(c) illustrates the normalized 5-structure subgraph

of link A−B.

B. Structure Subgraph Feature Representation

Let A be the the adjacency matrix of a normalized K-

structure subgraph G̃K
Sh→et

. For C(Nx) = m and C(Ny) = n,

the entry of A(m,n) (m,n ∈ N;m,n ≤ K) is the normalized

influence of structure link (Nx,Ny, Ẽk), which is calculated

by (4).

A(m,n) =

{
l̃k, if Ẽk = {(ñi, ñj , l̃k)} �= ∅;
0, if Ẽk = ∅. (4)

Since the target link et is to be predicted, A(1, 2) and

A(2, 1) are unknown and uniformly set as 0. A is symmetrical

because the dynamic networks in this paper are undirected

graphs. Thus, we can define the Structure Subgraph Feature

(SSF) of et by unfolding the upper right half of A by column.

Algorithm 3 SSF Extraction Algorithm

Input: G, et,K
Output: V(et)

1: initialize h← 0, Gh→et , GSh→et

2: while |VS | ≤ K do
3: h← h+ 1
4: construct Gh→et

5: GSh→et
← Algorithm 1 (Gh→et )

6: end while
7: C = Algorithm 2 (GSh→et

, et)
8: extract K-structure subgraph GK

Sh→et

9: construct G̃K
Sh→et

10: calculate adjacency matrix A by (4)

11: V(et)← unfold the upper right half of A by (5)

12: return V(et)

Definition 10: (Structure Subgraph Feature (SSF)): Given

an adjacency matrix A of normalized K-structure subgraph

G̃K
Sh→et

, the Structure Subgraph Feature (SSF) of a target link

et is a vector V(et) derived from the upper right half of A,

which is calculated as :

V(et) = conn(A(m,n)); 3 ≤ n < K, 1 ≤ m < n, (5)

where conn(·) means connecting the elements as a vector.

Figure 4(d) shows the adjacency matrix of normalized 5-

structure subgraph and the SSF of link A−B.

In addition, we can relax the entries of A in real applications

and let them encode other information to further increase

the flexibility SSF. In the experiments of this paper, for the

structure link (Nx,Ny, Ẽk) that C(Nx) = m and C(Ny) = n,

we set

A(m,n) = 1/(min(d(Nx, et), d(Ny, et))),

where d(Nx, et) is the length of shortest path1 from Nx to et
in G̃K

Sh→et
.

Figure 5 presents an example of the whole process of

extracting SSF of et at K = 10 from the dynamic network

G(tp,tq). Here we ignore the multiple links between nodes and

timestamps for legibility. The extraction starts from h = 1
and continues extracting GSh→et

until |VS | ≥ K. Then, the

Palette-WL Algorithm is applied to assign unique orders to

each structure node in GSh→et
. Next, GK

Sh→et
and G̃K

Sh→et
are

constructed. Finally, the adjacency matrix A and the SSF of

et, V(et) is calculated according to (4) and (5).

The detailed process of SSF extraction is illustrated in

Algorithm 3. Iteratively combining the subgraph (Line 2 to 6)

costs average time of O(K(|V |2). The time complexity of the

Palette-WL algorithm (Line 7) is O(K3) [14]. And the time

complexity of computing the normalized K-structure subgraph

(Line 9) and the adjacency matrix (Line 10) is O(|E|+K2).
Therefore, the total time complexity of SSF extraction is

O(K(|V |2) +K3 + |E|+K2) = O(K3 +K(|V |2)).
1

When calculating the shortest path, all ˜lk are set reciprocal.
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TABLE II: Statistics of Datasets

Datasets |V | |E| Avg. Degree Time Span
Eu-Email 309 61046 395.12 803 h
Contact 274 28245 103.08 96 h

Facebook 4313 42346 19.63 366 d
Co-author 744 7034 18.90 20 y
Prosper 1264 8874 14.04 60 m
Slashdot 2680 9904 9.52 240 d

Digg 3215 9618 5.98 240 h

VI. EXPERIMENTS

In this section, we conduct experiments to evaluate the ef-

fectiveness of SSF for link prediction tasks. Here we consider

the link prediction problem as a classification problem, that is

to classify the links that will be created in future or not.

A. Datasets Description

Eu-Email [36]: This network is generated using email

data from a large European research institution. A node

represents a institution member, and edges represent e-mail

communications between institution members.

Contact [37]: This network represents contacts between

people measured by carried wireless devices. A node

represents a person, and edges between two persons shows

that there were contacts between them.

Facebook [38]: This network is generated from a small

subset of posts to other user’s wall on Facebook. The nodes

of the network are Facebook users, and each directed edge

represents one post, linking the users writing a post to the

users whose wall the post is written on.

Co-author: This network is generated from a subset of

DBLP [39], representing co-author relationships between

researchers. A node is an author, and edges between two

nodes represent the authors have published papers together.

Prosper [40]: The data are loans between users of the

Prosper.com website and This network is directed and

denotes who loaned money to whom.

Slashdot [41]: This is the reply network of technology

website Slashdot. Nodes are users and edges are replies.

Digg [42]: This is the reply network of the social news

website Digg. Each node in the network is a user of the

website, and each directed edge denotes that a user replied to

another user.

All these networks are dynamic where edges are annotated

with timestamps showing the emerging time. In this paper,

we ignore the direction of edges, since we only predict if

there will be a link between two nodes. Table II presents the

detail of these datasets. “Time Span” is the length of the

period of dynamic networks, specifically, ‘h’, ‘d’, ‘m’ and

‘y’ stand for ‘hour’, ‘day’, ‘month’ and ‘year’ respectively.

The number of different timestamps of these networks are

normalized according to the time span. For example, the Eu-

email network spans 803 hours, thus we annotate 803 different

timestamps to the links ranging [1, 803].

(a) Facebook network (b) Co-author network

Fig. 6: The most frequent K-structure subgraph patterns in

two dynamic networks when K = 10

B. K-Structure Subgraph Visualization

To intuitively understand how effective the structure sub-

graph represents the surrounding network structures of links,

here we present two visualized K-structure subgraphs obtained

from Facebook and Co-author networks. We say two K-

structure subgraphs follow the same pattern when they have

the same connection relations among structure nodes (multiple

links between them are ignored). We randomly choose 2,000

links from the two dynamic networks respectively and extract

the GK
Sh→e

of the selected links with K = 10. Then we select

the most frequent pattern of GK
Sh→e

as shown in Figure 6.

The blue nodes are structure nodes, the red link is the target

link and the green links are structure links. The thickness of

each structure link is associated with the average number of

links that the structure link combines in all the K structure

subgraphs that follow the same pattern. The size of a structure

nodes is related to the degree.

Figure 6(a) shows the the most frequent pattern of K-

structure subgraphs in Facebook network. Note that although

the neighbor nodes seem have the same structure which is

against to the definition of K-structure subgraph, they are

actually not the same in GS1→et
because only K structure

nodes are selected from GS1→et
. The structure subgraph

pattern in Figure 6(a) shows that links are formed with nodes

with high degree. Since the links in the network represents

the replies to facebook posts, the pattern actually indicates the

fact that users in the Facebook network often write posts to

the walls of famous people who usually receive tremendous

number of replies.

Figure 6(b) shows the most frequent pattern of K-structure

subgraphs in Co-author network. This pattern of K-structure

subgraph is dense and the structure nodes are well connected

to each other, indicating that coauthor relationship are usu-

ally formed in small research groups. More specifically, the

pattern can reflect the fact that the scholars create coauthor

relationship with the scholars who have common coauthors

and with famous scholars who has a large number of co-author

relationships.

Although network structure of Facebook network and Co-

author network are obviously different, our proposed K-

structure subgraph can automatically capture meaningful fea-

tures from surrounding network topologies. Therefore struc-
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ture subgraph feature can encode useful topological informa-

tion and be consistently effective in various networks.

C. Experimental Evaluation and Discussions

In this section, we create two link prediction methods by

applying SSF to a linear regression model and an neural

machine classification model, namely SSFLR and SSFNM.

We compare the two methods on link prediction tasks with 11

baseline methods (including two variant versions SSFLR-W

and SSFNM-W) on 7 real-world dynamic networks.

1) Link Prediction Methods: Above mentioned CN [7],

PA [15] , Jaccard (Jac.) [16], AA [1] , RA [17], rWRA [9],

Random Walk (RW) [18], Katz [19] and WLF-based

methods [14] are all adopted as baselines. The detail of link

prediction methods are described as follows.

CN, PA, Jaccard (Jac.), AA, RA, rWRA, Random Walk
(RW) and Katz: the unsupervised ranking models using

corresponding features;

NMF [24] : Non-negative matrix factorization method for

link prediction;

WLLR [14]: the linear regression model adopting WLF;

WLNM [14]: the neural machine classification model

adopting WLF;

SSFLR: the linear regression model adopting SSF;

SSFLR-W: the variant version of SSFLR that treats dynamic

networks as static networks. SSFLR-W adopt SSF-W, which

is SSF without considering timestamps by replacing A(m,n)
with common 0/k entries, where 0 or k represents there are

0 or k links between structure nodes;

SSFNM: the neural machine classification model adopting

SSF;

SSFNM-W: the neural machine classification model adopting

SSF-W.

2) Experimental Settings: For supervised learning meth-

ods like WLLR, WLNM, SSFLR, SSFNM,SSFLR-W and

SSFNM-W, training phrase is required for link prediction. We

choose the last timestamp of the dynamic networks as the

present time lt, then select 70 percent of the real links at

lt as positive samples for training, and the remaining links

are selected as positive samples for test. We randomly select

fake links as negative samples and set them have the same

number as positive samples in both training set and test set.

For the methods that proposed in static networks, we ignore

all the timestamps and multiple history links between nodes to

construct the static version of the 7 datasets. For unsupervised

ranking models, we treat the training set as prior knowledge to

decide the threshold for classifying links based on their feature

value.

For NMF, we use the static version of the dynamic networks

at [1, lt − 1] as the history network and use NMF to directly

predict the adjacency matrix of networks at lt. The β in Katz is

0.001 and the weights of links for rWRA are set as the number

of history links between two nodes. The neural machine for

SSFNM and WLNM has three fully-connected hidden layers

with 32, 32, 16 neurons activated by ReLu and a softmax layer

as the output layer. The mini batch size is 10, epoch is 2000,

and learning rate is 0.001.

We utilize two popular evaluation metrics in classification

tasks, AUC and F1 score, to evaluate the performance of link

prediction. For both of the two metrics, higher values indicate

better link prediction performance.

3) Link Prediction Results: Table III presents the results of

link prediction of SSF-based methods and the baseline meth-

ods. Here we set K = 10 for both WLF-based methods and

SSF-based methods. We will further study the performance of

SSFNM with different K in the next subsection. Most of the

best values fall on SSFLR and SSFNM, which demonstrates

the superiority of SSF.

Among all link prediction methods that ignore the times-

tamps in dynamic networks, only the methods based on WLF

and SSF (WLNM, SSFLR-W and SSFNM-W) have relatively

consistent performance on all the 7 dynamic networks, while

others are only effective on several datasets. The reason is that,

instead of utilizing one or two types of topological informa-

tion, WLF and SSF can utilize all the topological information

encoded in the surrounding K nodes and K structure nodes,

which makes them adaptive to various networks.

Although SSFLR-W, WLLR, SSFNM-W and WLNM all do

not specify the influence of timestamps in dynamic networks,

SSFLR-W and SSFNM-W are based on SSF-W, which utilize

structure subgraph that combines nodes into structure nodes,

while WLLR and WLNM are based on WLF which tradi-

tionally adopt enclosing subgraph containing normal nodes.

From table III, we can observe that SSFLR-W surpass WLLR

on most datasets. Due to the deficiency of linear regression

model of learning high-dimensional latent patterns, SSFLR-W

can not make full use of SSF-W and thus can not consistently

outperform WLLR. On the other hand, benefiting from the

ability of neural machine of learning latent patterns, SSFNM-

W outperforms WLNM on all datasets. This demonstrates the

great effect of structure subgraph. Combining nodes with the

same topological structure makes structure subgraph much

more effective to represent network topologies and ensures

SSF-W and SSF can encode plentiful multiple types of topo-

logical information.

By specifying the influence of multiple links and different

timestamps with normalized influences in dynamic works,

SSFLR and SSFNM achieve even better performance than

SSFLR-W and SSFNM-W on almost all dynamic networks

(only except SSFNM on Slashdot dataset and SSFLR on Digg

dataset). The results indicate that it is necessary to consider

the influence of multiple links and different emerge time under

the context of dynamic networks. The proposed normalized

influence makes sense for dynamic networks and promotes

the performance of link prediction in most situations.

Based on all above results, we can conclude that the SSF-

based methods outperform the baseline methods and provide

consistently top-class performance on various dynamic net-

works.

4) Influence of K: We study the influence of K on the

link prediction performance of SSF-based methods. Figure 7
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TABLE III: Results of Link Prediction on 7 Datasets

Methods

Datasets Eu-email Contact Facebook Coauthor Prosper Slashdot Digg
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

CN 0.903 0.901 0.802 0.802 0.694 0.604 0.681 0.550 0.469 0.100 0.616 0.413 0.562 0.230
Jac. 0.904 0.904 0.804 0.804 0.695 0.606 0.682 0.546 0.496 0.091 0.617 0.411 0.562 0.228
PA 0.695 0.693 0.803 0.803 0.303 0.302 0.416 0.410 0.294 0.290 0.677 0.674 0.713 0.711
AA 0.923 0.927 0.804 0.804 0.695 0.606 0.680 0.550 0.469 0.090 0.616 0.413 0.562 0.229
RA 0.920 0.920 0.807 0.808 0.694 0.605 0.689 0.550 0.469 0.100 0.615 0.412 0.562 0.229

rWRA 0.923 0.923 0.803 0.804 0.694 0.606 0.681 0.551 0.469 0.095 0.614 0.409 0.562 0.230
Katz 0.952 0.952 0.802 0.802 0.837 0.837 0.630 0.631 0.286 0.287 0.686 0.687 0.697 0.698
RW 0.940 0.941 0.870 0.852 0.827 0.769 0.820 0.783 0.716 0.662 0.802 0.708 0.641 0.454

NMF 0.774 0.856 0.557 0.660 0.641 0.639 0.584 0.761 0.632 0.757 0.798 0.858 0.697 0.799
WLLR 0.914 0.842 0.711 0.595 0.767 0.629 0.816 0.679 0.737 0.680 0.705 0.752 0.737 0.757

SSFLR-W 0.900 0.798 0.876 0.784 0.934 0.889 0.857 0.778 0.726 0.662 0.821 0.679 0.825 0.784
WLNM 0.896 0.896 0.727 0.660 0.790 0.740 0.883 0.881 0.786 0.790 0.807 0.832 0.881 0.874

SSFNM-W 0.925 0.921 0.853 0.867 0.933 0.929 0.861 0.854 0.802 0.804 0.853 0.843 0.886 0.874
SSFLR 0.937 0.812 0.984 0.820 0.855 0.830 0.911 0.827 0.973 0.792 0.832 0.531 0.683 0.531
SSFNM 0.962 0.961 0.972 0.972 0.942 0.943 0.933 0.931 0.937 0.936 0.831 0.821 0.891 0.894

(a) The AUC scores of SSFNM with different K (b) The F1 scores of SSFNM with different K

Fig. 7: AUC and F1 scores of SSFNM with different K on different datasets

shows the AUC scores and F1 scores of SSFNM on different

datasets with K = 5, 10, 15 and 20, respectively. Although

the peaks are different on different datasets, most peaks are

achieved when K ≤ 15, which indicates that we do not need a

very large K to reach the best performance in real applications

and select only K structure nodes for K-structure subgraph

will not cause significant decrease of the performance on link

prediction tasks. The reason is that there are noise data in

real dynamic networks, e.g. missing links and false links,

increasing K will introduce more noise data into link features,

leading to the deficiency of methods for link prediction.

VII. CONCLUSIONS

In this paper, we studied the link prediction problem in

dynamic networks and designed a universally applicable link

prediction method for dynamic networks. We first proposed

the structure subgraph which can efficiently represent the

surrounding network structures of a target link. Next, we

proposed the normalized influence to address the influence

of multiple links between two nodes and different emerging

time of links in dynamic networks. Then, we proposed the

Structure Subgraph Feature (SSF), which is derived from the

adjacency matrix of the normalized K-structure subgraph.

The proposed K-structure subgraph can automatically encode

useful surrounding topology of a target link and the manner of

representing K-structure subgraph through adjacency matrix

makes SSF can directly encode all topological information

into a feature vector. Furthermore, the normalized influence

makes SSF be effective to deal with influence of timestamps

in dynamic networks. Finally, we proposed two link prediction

methods by applying SSF to a linear regression model and a

neural machine. Comparing with 11 baseline link prediction

methods on 7 real-world dynamic networks, the experimental

results demonstrate that the two SSF-based methods outper-

form the baseline methods and provide consistently top-class

performance on link prediction tasks over various dynamic

networks.

REFERENCES

[1] L. A. Adamic, E. Adar, Friends and neighbors on the web, Social
Networks 25 (2003) 211–230.

[2] Y. Koren, R. M. Bell, C. Volinsky, Matrix factorization techniques for
recommender systems, Computer 42.

1219

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on March 14,2024 at 21:02:10 UTC from IEEE Xplore.  Restrictions apply. 



[3] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational
machine learning for knowledge graphs, Proceedings of the IEEE 104
(2016) 11–33.

[4] I. Bhattacharya, Collective entity resolution in relational data, TKDD 1
(2006) 5.

[5] V. E. Krebs, Mapping networks of terrorist cells, 2002.
[6] Y. Qi, Z. Bar-Joseph, J. Klein-Seetharaman, Evaluation of different

biological data and computational classification methods for use in
protein interaction prediction., Proteins 63 3 (2006) 490–500.

[7] D. Liben-Nowell, J. M. Kleinberg, The link prediction problem for social
networks, JASIST 58 (2003) 1019–1031.
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