
1

A Blockchain-empowered Multi-Aggregator
Federated Learning Architecture in Edge Computing

with Deep Reinforcement Learning Optimization
Xiao Li, Student Member, IEEE, and Weili Wu, Senior Member, IEEE,

Abstract—Federated learning (FL) is emerging as a sought-
after distributed machine learning architecture, offering the
advantage of model training without direct exposure of raw
data. With advancements in network infrastructure, FL has been
seamlessly integrated into edge computing. However, the limited
resources on edge devices introduce security vulnerabilities to
FL in the context. While blockchain technology promises to
bolster security, practical deployment on resource-constrained
edge devices remains a challenge. Moreover, the exploration of
FL with multiple aggregators in edge computing is still new in the
literature. Addressing these gaps, we introduce the Blockchain-
empowered Heterogeneous Multi-Aggregator Federated Learning
Architecture (BMA-FL). We design a novel light-weight Byzan-
tine consensus mechanism, namely PBCM, to enable secure and
fast model aggregation and synchronization in BMA-FL. We
also dive into the heterogeneity problem in BMA-FL that the
aggregators are associated with varied number of connected
trainers with Non-IID data distributions and diverse training
speed. We proposed a multi-agent deep reinforcement learning
algorithm to help aggregators decide the best training strategies.
The experiments on real-word datasets demonstrate the efficiency
of BMA-FL to achieve better models faster than baselines,
showing the efficacy of PBCM and proposed deep reinforcement
learning algorithm.

Index Terms—Blockchain, Distributed Machine Learning,
Deep Reinforcement Learning, Edge Computing, Federated
Learning.

I. INTRODUCTION

W ITH the rapid development of internet of things (IoT),
edge devices such as mobile devices, smart sensor and

smart meters are enhancing the productivity and efficiency of
data collecting [1], [2], which facilitates the development of
intelligent future. Machine learning models are widely used
in intelligent applications to obtaining insights from enormous
data on edge devices [3].

However, the abuse of intelligent applications brings recent
privacy concerns from public about the unrestrained data col-
lection. European Union has announced multiple regulations
to restrict the private data exposure and acquisition [4]. Private
data should not be shared with third parties, and transmitting
sensitive information over the internet could expose it to
cybersecurity threats.

X. Li and W. Wu are with Department of Computer Science at The
University of Texas at Dallas.

Coresponding Author: Xiao Li (Xiao.Li@utdallas.edu)
This work is partially supported by NSF Grant No. 1822985 and No.

1907472

Federated Learning (FL) [5] is investigated and becoming
a popular solution that allows machine learning model re-
questers/owners get model trained without having to collecting
data from edge devices at unintended cost and risks. In a
typical federated system, a model is trained across multiple
trainers who have the training data. An aggregator will collect
and aggregate the trained models. Then the aggregated model
is sent back to trainers for another round of training. As the
the data on each trainer are never shared, the privacy can be
preserved.

The distributed architecture of FL brings trust issues among
the model requester and trainers. Malicious trainers may
upload random models to spoil the global model, and lead
to failure of training [6], [7]. Specially, in edge computing
context, edge devices introduce security vulnerabilities to the
model training because of limited supervision and low security
robustness [8]. Incorporating blockchain modules in to FL
phases can be helpful to validate the models without having
to build a trustable third-party to do authentication. The smart
contract deployed on the blockchain system can ensure the
quality of model updates, avoiding malicious trainers that
attempts to damage the global model. The tractability of
blockchain storage also provides transparent model update and
training log to all participants [9]–[13].

In most Blockchain-empowered FL (BFL) work in edge
computing, edge devices are often set as the peers in
blockchain modules based on intuition that edge devices are
trainers and thus have to share parameters via blockchain.
However, the blockchain module imposes extra computation
and communication burden to edge devices while edge de-
vices, e.g. micro computers or sensors have limited compu-
tation power. Therefore it is not practical to involve those
edge devices into blockchain modules such as [13]–[15] did
in their work. Especially when Proof of Work (PoW) consen-
sus mechanism is used as the consensus mechanism in the
blockchain module [11], [16], [17], tremendous computation
costs are applied to edge devices, who are supposed to focus
resources on model training instead of solving meaningless
hash puzzles in PoW.

Moreover, most BFL framework are proposed under the
context where only one aggregator exits which can not reflect
the common real-word use cases [4], [18]. In large-scale edge
computing systems, where edge devices are broadly distributed
in wide range of spaces, edge devices are usually connected
through multiple edge servers, such as network access points
or base stations.

2

In this paper, we address these under-explored problems by
proposing a novel architecture of blockchain-FL framework
in edge computing context where multiple edge servers are
serving as multiple aggregators.

In addition, due to the heterogeneity of data holding by edge
devices, the models converged on local data will lost general-
izability which will ruin the performance of aggregated models
on unseen data. We design a simple demonstrative experiment
to illustrate the problem. We create an aggregator with 30
trainers holding FashionMnist dataset in heterogeneous dis-
tribution. The conventional way for FL training is that each
trainer trains the model on their local data till convergence.
We compare this strategy with an early stopping strategy that
all trainers will do at most 10 epochs of training. As shown in
Table I, “early stop” strategy finished 20 rounds aggregation
with 36% less time, but achieved better final performance. By
stop the training after 10 epochs on each trainer, “early stop”
went through 62% less data samples which saves significant
computation resources. Figure 1 shows the performance of two
strategies after each aggregations. It is crucial for trainers and
aggregators try to obtain the best model as usually the reward
is associated with the model performance. In this paper, we
solve this problem in a more challenging context that multiple
aggregators with varied number of trainers exist in BFL.

TABLE I
AN EXAMPLE OF TRAINERS BEHAVIOUR AND CORRESPONDING RESULTS

Stats Till Converge Stop after 10 epoch
Time Spent 78.67min 49.78min

Final Accuracy 91.78% 92.36%
Total # Data Samples 29,638,581.11 11,018,445.44
Total # Aggregation 20 20

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Aggregation Times

87

88

89

90

91

92

Te
st

 A
cc

ur
ac

y
(%

)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

sAccuracy-Till Converge
Accuracy-Early Stop
Taining Loss-Till Converge
Taining Loss-Early Stop

Fig. 1. The Training Process Comparison between “Till Converge” and “Early
Stop”

The contribution of this paper can be summarized as:
1) We introduce the Blockchain-empowered Heteroge-

neous Multi-Aggregator Federated Learning architecture
(BMA-FL) into edge computing context, where each
aggregator is connected with varied number of trainers
with Non-IID data and CPU speed distribution.

2) We design a blockchain module to enable fast, secure
and transparent global model consensus. Specifically, a
Performance-based Byzantine Consensus Mechanism is

proposed to select a miner for for aggregating models
from all aggregators and executing global model up-
dates.

3) We propose a Multi-Agent with Shared Buffer Deep
Reinforcement Learning algorithm (MASB-DRL). This
approach empowers aggregators to refine their training
strategies, enhancing the speed and performance of the
BMA-FL.

4) We conduct experiment on common real-world datasets
to demonstrate the efficacy and efficiency of proposed
BMA-FL architecture and MASB-DRL algorithm.

The remainder of this paper is organized as: In Section II
we review recent related work in literature. In Section III
we describe the proposed multi-aggregator federated learning
framework in edge computing. After that the Multi-Agent
with Shared Buffer Deep Reinforcement Learning algorithm
is presented in Section IV. Then the evaluation of proposed
architecture is presented in Section V. Finally we conclude
this paper in Section VI.

II. RELATED WORK

Blockchain system can elevate the security level of data
transmission among edge devices due to the vulnerabilities
to security attack, also introduce fairness and decentraliza-
tion to federated learning [19]. Blockchain recently has been
widely introduced into federated learning in edge computing
context [2], [20] in various use cases. Hu et al. [21] and
Wang et al. [22] design blockchain-based FL frameworks for
mobile crowd-sourcing. Otoum et al. [23] study decentralized
sustainable energy trade with security and robustness ensured
by blockchain and FL. Other topics such as digital twin
network [24], [25], content cache [26] and energy storage [27]
are also studied with incorporation of BFL.

Trainers Trainers Trainers Trainers

Aggregator Intermediate Aggregators

End Model Aggrega�on

Layer 1

Layer 2

Layer 3

Layer 2

Layer 1

Fig. 2. Classic 2-layer FL architecture vs 3-layer FL architecture studied in
this paper

Most of existing BFL frameworks in edge computing are
composed in two layers i.e. one model owner/aggregator and
multiple model trainers as shown in Figure 2. Fan et al. [28]
considers three layer but the the IoT nodes in lowest layer are
only for providing data to edge nodes and does not involve any
function in FL training. Cui et al. [26] proposed similar three
layer architecture as in this paper where there are also multiple
edge nodes. But these edge nodes are working as trainers and
the models are still aggregate by one central server, which
is still not a multi-aggregator architecture. Liu et al. [29]
utilizes distributed aggregation in vehicular network which
allows multiple aggregators in the vehicular network sharing
models trained by connected vehicles. But the author did not

3

study the heterogeneous problem among the aggregators and
Proof of Accuracy (PoA) will make the blockchain module
become centralized very fast. Nguyen et al. [30] also considers
multiple edge servers as aggregators similar to this paper, but
we do not include edge devices into the blockchain mining
to save resources on edge devices. Lee and Kim [31] also
study multi-aggregator with heterogeneous data distribution
and design local aggregation and global aggregation phases
in their proposed architecture. Though the terms are similar
in this paper, FL is not conducted within edge computing
scope and we have totally different blockchain design and
aggregation formulation.

Because maintaining blockchain impose extra computation
and storage cost to edge devices, researchers have been trying
to propose novel consensus mechanisms in edge computing
context as substitutes of Proof of Work (PoW) which is
current the most common consensus mechanism. Qu et al. [32]
proposing Proof of Federated Learning (PoFL) and Lu et
al. [10] proposing Proof of Quality (PoQ) are using the training
performance as the criteria to select miner. Wang et al. [33]
propose PF-PoFL as an extension to PoFL, which removes
the central platform and forming a dynamically optimized
pooled structure for AI model training. Li et al. [34] propose
Proof of Committee, that a selected committee is responsible
for model validation and blockchain generation based on
evaluating collected model’s performance on the data held by
the committee. Chen et al. [35] propose delegated Byzantine
fault-tolerant consensus that divides all nodes into accounting
nodes who will be block minders and ordinary nodes who will
vote accounting nodes. The consensus is only reached among
the accounting nodes, instead of sending consensus messages
to all system nodes which reduces the consensus delay.

Another direction to reduce the blockchain consensus cost
is to find the best resource allocation on edge devices so that
the blockchain will not consume too much resources cause
insufficiency of model training. Reinforcement learning-based
algorithm are often taken into account to tackle this issue.
Nguyen et al. [14] use Deep Reinforcement Learning (DRL)
to decide the amount of data and energy used on edge device
as well as the blockchain generation speed to reduce the model
training latency. Lu et al. [25] focus on the communication cost
of blockchain system, they designed a DRL algorithm to opti-
mize the communication bandwidth allocation. Lin et al. [36]
propose a streamline-based shard transmission mechanism for
BFL in transportation system, where DRL is adopted to to
automate the selection of parameters of vehicular shards. Lu
et al. [37] propose an asynchronous federated learning scheme
by adopting DRL for node selection to improve the efficiency.

III. BLOCKCHAIN-EMPOWERED HETEROGENEOUS
MULTI-AGGREGATOR FEDERATED LEARNING

ARCHITECTURE

In this section, we describe the proposed Blockchain-
empowered Heterogeneous Multi-Aggregator Federated
Learning Architecture (BMA-FL). Comparing to existing
common FL architecture in edge computing, BMA-FL incor-
porates multiple aggregators that are connected with different

numbers of trainers, and avoids using trainers (edge devices) to
maintain the blockchain as trainers are considered have limited
resources for maintaining blockchain and train the model at
the same time.

Model Requester

: Edge Devices

: Blockchain for global model synchronizing

: Edge Servers/Local Aggregator/blockchain peers

Fig. 3. Blockchain-empowered Heterogeneous Multi-Aggregator Federated
Learning Architecture (BMA-FL)

Figure 3 shows the proposed BMA-FL architecture. In the
architecture, there are 3 types of actors: Model Requester,
Local Aggregators and Trainers.

• Model Requester: A third-party who distributes a ma-
chine learning task.

• Local Aggregators: Edge servers who will receive the
task from model requester, and distribute the task to
its connected trainers. The test dataset D received from
model requester will not be sent to workers. Edge servers
are also Peers/Miners for maintain the blockchain. The
blockchain is crucial for updating the global model and
organizing the model synchronizing. Blockchain module
detail will be presented in next section.

• Trainers: The Edge devices who holds training data. They
will receive the task from edge server. Trainers train the
model parameters θ on their local data and return the
trained model parameters back to connected edge servers
for local aggregation.

Let U be a model requester that announces a machine
learning task that requires the distributed learning framework
to train on their owned data. Let Pi (i ∈ Z+

N) be a edge
server that connected with multiple trainers vij (j ∈ Z+

mi
).

The trainers hold the data, that are not feasible to be
massively transmitted or disclosed, therefore the model must
be trained locally. The trainers in edge computing context
are usually edge devices or IoT micro-computers that have
limited computation resources. Edge devices’ main function
is to collect data and conduct lightweight computing tasks,
therefore those devices should not take the load of maintaining
the blockchain system. This issue is often ignored by existing
literature.

4

Furthermore, much of the current literature presupposes that
trainers connect exclusively to a single aggregator (referred
to as an edge server in this paper). Such an assumption can
be an oversimplification when compared to real-world IoT
applications. In these applications, sensors or micro-computers
are typically dispersed over a vast area, often connecting to
multiple edge servers for communication. In this paper, we
consider that multiple edge servers who are connected to
multiple edge devices and each edge device will only connect
to one edge server.

BMA-FL executes a machine learning task as following
steps in an iterative manner.

1) First, the model requester U will announce the new task
T to all edge servers. T = {θ0, I, O,E,D}. θ0 is the
initial value of learnable parameters, I is the abstracted
input format of the model, O is the output format of the
model, E is the evaluation metrics for the model, and D
is the test data samples for the model. D should never
be included in any training phases, and only be held by
edge servers to evaluate the outcomes of trainers.

2) Then, edge servers decide if the connected trainers have
satisfied requirements for training the model according
to the specifications in T . Edge server will hold the test
data D, and distribute the task to connected feasible
trainers.

3) Upon receiving the task, trainers will start train the
model on its local data.

4) Next, for each edge server Pi, it can decide a fre-
quency fi at which it collects the trained parameters
from connected edge devices. It’s important to note that
Pi might gather parameters from vij that haven’t yet
converged. Whenever Pi opts to collect, the trainer is
obligated to report its current parameters to its associated
local aggregator Pi. As highlighted in the Introduc-
tion section, excessive training on a local device can
lead to local optima in parameters, which may not be
beneficial for the overall model performance. Thus, Pi

must judiciously determine the frequency fi to optimize
performance. This challenge is addressed using a deep
reinforcement learning method discussed in Section IV.

5) After an edge server Pi collects the reported parameters
from vij , denoted as θij , Pi will conduct Local Ag-
gregation, which aggregates θij into one local model
represented by parameter θi. Then Pi distribute this
aggregated model back to the connected edge devices
vij . Please note that as fi varies among different Pi,
hence different Pi may conduct different rounds of local
aggregation, which will impact the final trained model.

6) Each edge server maintains the local parameters update
logs which are stored as transactions, and will be packed
into blocks at frequency F which is a given constant.
Actually, at a frequency F , edge servers need to make
consensus on current global model which is aggregated
from all local models θi. This step is named Global
Aggregation.

7) The edge server who conduct the global aggregation is
chosen through the blockchain module, the global update

will also be propagated and verified through blockchain.
8) Upon receiving the new block that contains the updated

global model parameters, each edge server will distribute
these updated parameters to its connected trainers. Then
the trainers will conduct another round of training.
Above steps will be repeated until the global model
converges or the performance is satisfied.

A. Blockchain Module Architecture

The blockchain module in the BMA-FL architecture is
responsible model update logs, conducting global aggregation
and transmitting the aggregated global model. The blockchain
module is illustrated in Figure 4.

As described above, for a local aggregation round, edge
server Pi will collect the current parameters θij from all
connected edge devices vij , and distribute the aggregated
model back to edge devices. The updated parameters will
be stored in a log, called Local Aggregation Transaction. As
shown in Figure 5, a Local Aggregation Transaction contains
timestamp information and parameter records.

At the frequency F (which means every F units of time, one
block will be generated), global aggregation is conducted that
a chosen edge server Pj will act as a miner. Let use k to denote
the current global aggregation time. The miner will first collect
all Tlocali from all Pi (i ̸= j) which obviously contains the
latest local model parameters θi, then conduct conventional
federated learning aggregation, i.e. average aggregation. Pj

will not wait for edge servers finish their on-going training
round, but grab all up-to-date Tlocali . The aggregated model
is the global model denoted as θk and package them into a
Global Aggregation Block, denoted as B. For brevity, we use
Block to refer to Global Aggregation Block.

The structure of B is shown in Figure 6. B contains block
header and block body. Block header records the miner’s
identity information, timestamp and previous block’s hash
value. The block body records all Tlocali for i ∈ Z+

N and the
aggregated global model θk. The miner edge server Pj will
then broadcast the created block for all other edge servers
following designed consensus mechanism proposed in next
section.

B. Performance-based Byzantine Consensus Mechanism

The consensus mechanism in the blockchain module is
crucial for choosing trustable edge servers to aggregate models
and achieve consensus of global models among all edge
servers.

Compared with traditional federated learning architecture
where the situation is straightforward that the only aggregator
will aggregate the collected models and derive a global model,
in multi-aggregators setting, we have to design a consensus
among all aggregators to elect one aggregator at each global
aggregation round to do model aggregation as well as to make
it synchronized and verified by all other aggregators.

A common consensus mechanism is Proof-of-Work (PoW).
However it will waste considerable energy on solving mean-
ingless hash puzzle. As raised by [32], the energy consumed
on hash puzzle can be saved for executing federated learning

5

Transac�on
𝑚𝑒𝑚𝑃𝑜𝑜𝑙

𝒯𝑙𝑜𝑐𝑎 𝑙1
1

𝒯𝑙𝑜𝑐𝑎 𝑙1
2

…

𝐵𝑡−1 𝐵𝑡−2

Edge Server 𝑃1

Trained Model
Updated Model

Trained Model

Updated Model

Local
Aggrega�on

Edge Device 𝑣11

Edge Device 𝑣12

Transac�on
𝑚𝑒𝑚𝑃𝑜𝑜𝑙

𝒯𝑙𝑜𝑐𝑎 𝑙2
1

…

𝐵𝑡−1𝐵𝑡−2

Edge Server 𝑃2

Trained Model
Updated Model

Trained Model

Updated Model

Local
Aggrega�on

Edge Device 𝑣21

Edge Device 𝑣22

Transac�on
𝑚𝑒𝑚𝑃𝑜𝑜𝑙

𝒯𝑙𝑜𝑐𝑎 𝑙3
1

𝒯𝑙𝑜𝑐𝑎 𝑙3
2

𝐵𝑡−1 𝐵𝑡−2

Edge Server 𝑃3Trained Model

Local
Aggrega�on

Edge Device 𝑣31
Trained Model

Updated Model

Edge Device 𝑣23

𝒯𝑙𝑜𝑐𝑎 𝑙3
3

Trained M
odel

Updated M
odel

…

𝐵𝑡

Global
Aggrega�on

𝐵𝑡 𝐵𝑡

PBCM

Fig. 4. The blockchain module in Blockchain-empowered Heterogeneous Multi-Aggregator Federated Learning Architecture (example of 3 edge servers)

Transaction ID , Generator , Timestamp

Transaction Body

Transaction Header

Models from Trainers:

Local Aggregated Model:

Fig. 5. The structure of local aggregation transaction Tlocali at timestamp t

Block Body

Block Header

Local Aggregate Transactions:

Global Aggregated Model:

Previous Block Hash

Current Block Hash

Miner 𝑃𝑗 , Timestamp 𝑘

Previous Block

Fig. 6. The block storage structure of B at timestamp k

tasks. On the other hand, due to lack of trust and delay or dis-
turb of communication among edge servers, a byzantine fault
tolerant consensus is desired in this paper’s scenario. Castro
and Liskov [38] proposed a practical byzantine fault tolerance
algorithm (PBFT) that can achieve final consensus after three
specific message propagation. PBFT is now commonly used

in blockchain systems [39]. However, PBFT does not includes
the miner election as required in our proposed architecture. In
addition, a corresponding incentive mechanism should exist in
the consensus mechanism to motivate the edge servers to work
hard for providing helpful local models that benefit the global
model.

To solve above problems, this paper proposes Performance-
based Byzantine Consensus Mechanism (PBCM). PBCM
contains 4 stages: miner election, pre-prepare, prepare and
commit as illustrated in Figure 7.

𝑃1

𝑃2

…

𝑃𝑗

𝑃𝑛

Pre-Prepare Prepare Commit

Miner
Election

Malicious peer failed to commit

Fig. 7. Illustration of PBCM

(1): Miner Election: One edge server will be elected based
on their model training performance as the miner. We evaluate
the training performance of an edge server by the amount of its
performance increase (PI) in terms of evaluation metrics spec-
ified as E in learning task T , e.g. model accuracy. Specifically
PIki = E(θk

i)−E(θk−1
i), where θk

i is the current up-to-date
aggregated local model of Pi at k-th global aggregation round
and θk−1

i is the previous local model of Pi at (k−1)-th global
aggregation round.

We then define a trust score Sk
i associated with Pi. Based on

the common sense that edge servers who train better models
are more trust-worthy and who honestly conduct mining and

6

verification in history are more trust-worthy, the Sk
i is defined

as Equation 1 and Equation 2. The trust score is updated after
each round of global aggregation. Based on the different role
of Pi at round k, the trust score is updated accordingly.

When Pi is the miner at round k:

Sk
i =

{
min{1, Sk−1

i +∆1}+ PIki if Bk is accepted
max{0, Sk−1

i −∆1}+ PIki if Bk is rejected.
(1)

When Pi is no the miner at round k:

Sk
i =

min{1, Sk−1

i +∆2}+ PIki
if Pi’s decision consistant with final result
max{0, Sk−1

i −∆2}+ PIki
if Pi’s decision incosistant with final result.

(2)

We set ∆1 > ∆2 > 0, as the rewards to miner should be
higher than other peers in blockchain because most times edge
devices are just regular peers. The initial parameters PI0i = 0
and S0

i = 0. At the k-th global aggregation round, the miner
is selected from all edge servers Pi (i ∈ Z+

N) that an edge
server Pi is selected with probability Prki :

Prki =
Sk−1
i∑

j∈Z+
N
Sk−1
j

(3)

Obviously, the edger sever who has better training effects
(higher performance increase) will have higher probability to
be selected as miner. A miner or a regular peer who verifies
the block will also gain rewards if it provides valid block or
block verification, consequently the trust score will increase.

(2): Pre-prepare: At this stage, the selected miner Pj will
package the block Bk, and create a pre-prepare message
(SKj(Bk), pre− prepare). SKj is the secrete key of Pj . Pj

then broadcasts Bk and the pre-prepare message to all other
edge servers and requests responses. All these edge servers
will verify if the received block Bk contains valid information,
e.g. the parameters in the transaction are in valid format, no
anomaly in the history of parameter updates. If the block is
verified valid, it will be stored, otherwise it will be discarded.

(3): Prepare: If a non-miner edge server Pi be-
lieves Bk is valid, it will broadcast a prepare message
(SKi(SKj(Bk)), prepare) to all the other edge servers, so
that everyone knows Pi’s decision. Then every edge server
(including the miner) gathers all the received prepare message.
All edge servers must make initial decisions at this step, that
whether add or discard this block Bk into existing blockchain.
Let Gk

i be edge server set from which edge server Pi receives
prepare messages (including Pi itself), we let Pi accept Bk if
following statement stands:∑

n∈Gk
i

Prkn ≥ (2⌊N − 1

3
⌋+ 1)

1

N
, (4)

where N is the total number of edge servers in the sys-
tem. If Pi accepts Bk, it will broadcast commit message
(SKi(SKj(Bk)), commit) to all other edge servers.

(4): Commit: After edge servers send out commit message,
they will wait commit messages from other edge servers,. For

each edge server Pi, its consensus process is called completed
when its received commit messages satisfies the following
statement: ∑

n∈Hk
i

Prkn ≥ (2⌊N − 1

3
⌋+ 1)

1

N
, (5)

where Hk
i is edge server set from which edge server Pi

receives commit messages (including Pi itself). At this point,
Pi knows the new block Bk is accepted by the whole
blockchain module and will append the new block into its local
blockchain no matter what was the Pi’s intial decision. The up-
to-date model parameters as well as the update history will be
permanently, unalterably stored in the blockchain shared with
all edge servers, which provides transparency and security to
the BMA-FL architecture.

After the commitment, all edge servers Pi will update their
score Sk

i according to Equation 1 and Equation 2 for next
round miner election and blockchain update.

IV. DEEP REINFORCEMENT LEARNING OPTIMIZATION
SCHEME

To be chosen as miners, edge servers are incentivized to
enhance their training outcomes through local aggregation.
Within the distributed learning framework, the Non-IID data
distribution and CPU speed vary among trainers, leading to
a natural variation in model quality. However, classic FL
architectures often weight the model based on the data volume
of each trainer, neglecting the actual quality of the training [5].
Furthermore, these architectures tend to wait for the slowest
trainer to complete its training before proceeding with aggre-
gation. We address this practical issue in this section, that the
model aggregation should not only take trainers’ data amount
as weight, but also take account of the performance of their
actual trained model.

In addition, blockchain module appends new block with a
given frequency F , local aggregators have to trade off how
many times of local aggregation should they perform, as more
local aggregation rounds bring better parameter sharing among
trainers but the parameters will be less converged on each
trainer as less training time per local aggregation. Let fi
be the local aggregation frequency decided by edge server
Pi, which means every fi units of time, Pi will perform
one local aggregation. In this paper, we devise an deep
reinforcement learning optimization scheme that selects the
most appropriate weights for trainers during local aggregation,
aiming to expedite model training.

For a trainer vij , it holds data denoted as Dij , it have CPU
speed for training data cij epoch/unit > 0 that is the vij
can train cij epochs on data Dij within each time unit. For
example, cij = 0.5 means it vij can only finish half of the
epoch given data Dij .

Though in FL, the data are considered privacy and should
not be disclosed to anyone, in this paper, we give the right
back to edge devices and edge servers, so that edge devices
can decide if to upload the data to edger servers for getting
more data trained, or keep the data private locally. To enable
modeling different use cases, we set up the penalty of data

7

upload as σ ∗ |Dupij
|. Where σ is the penalty coefficient and

|Dupij
| is the size of uploaded data from vij to Pi. In this

paper, we only allow Dupij
be the portion of data that vij not

able to finish within one epoch during fi. The uploaded data
will not be trained again locally at vij . σ can be adjusted based
on real application demands, higher σ will lead the system try
to avoid any data upload, and lower one can allow more data
offloaded. Edger server Pi will decide if the uploaded data
|Dupij

| will be accepted based on vij’s training performance
because if vij can produce good models, the data from vij are
more likely considered valuable. Specifically, let θij be the
trained model of an edge device vij , then a decision factor
Uij is calculated by Pi to determine the acceptance.

Uij = σ ∗ |Dupij
|+ hi1 ∗ E(θij) + ai. (6)

hi1 and ai are parameters to be decided by Pi. If Uij >= 0,
Pi will accept the uploaded |Dupij

| and train it on edge server.
Otherwise, Pi will refuse to train |Dupij

|. Let θi0 be the model
trained on the edge server Pi.

At each local aggregation, edge server Pi assigns weight
Wij to θij for local aggregation. We first define W ′

ij to
combine the impact of data amount and the trainers model
accuracy as:

W ′
ij = wi0 ∗ |Dij \Dupij

|+ wi1 ∗ E(θij) + bi, (7)

where wi0, wi1 and bi are parameters to be decided by Pi.
Specially, W ′

i0 = wi0 ∗ |Dupij
|+wi1 ∗E(θi0) + bi Then Wij

is further defined in Equation 8 as normalized W ′
ij so that∑

j∈Zmi
Wij = 1.

Wij =
W ′

ij∑
j∈Zmi

W ′
ij

(8)

Finally the local aggregation is defined in Equation 9, that
the aggregated model θi at Pi is the averaged trainer models
θij weighed by Wij .

θi =
∑

j∈Zmi

Wij ∗ θij (9)

W allows edge servers dynamically adjust the weights to
the collected models from edge devices based on each rounds
model performance, which will motivate each trainers keep
producing effective models. Consequently, the final model is
more robust to be spoiled by malicious trainers, and the whole
FL schema is more secure.

To summarize the objective of edge server Pi, Pi has to
decide six key parameters, including fi, hi1, ai, wi0, wi1

and bi so that Pi is able to produce better aggregated model
during each block interval F , which will help Pi earn more
probability to become miner at blockchain consensus phase.

In this paper, we design a Multi-Agent with Shared Buffer
Deep Reinforcement Learning algorithm (MASB-DRL) to
solve the problem. The general idea is that for each edge server
Pi, a reinforcement learning (RL) task is defined and will
be solved by a separate RL agent Ai that the Ai is able to
learn from not only Pi’s past experience but from all other
edge servers through Shared Replay Buffer. The architecture

of MASB-DRL is illustrated in Figure 8. The challenge of the
RL task is how to make the past experience from different
edge servers useful for others as they are within different RL
environment settings, i.e. varied number of connected edge
devices, with varied data amount and training speed on each.
The same parameter setting for different edge server may
result in totally different outcomes. MASB-DRL addresses this
challenge through incorporating the edge servers status into
agent training status.

In detail, the proposed MASB-DRL on each edge server Pi

is defined as follows.
Agent Ai: Each edge server Pi has an agent Ai. Because

our action space is not discrete, we adopt Deep Deterministic
Policy Gradient (DDPG) algorithm [40] as agent, which is
a popular and state-of-art deep RL algorithm for continuous
action space.

Action Space Ai: Ai is composed of the six parameters,
Ai = [fi, hi1, ai, wi0, wi1, bi], agent Ai is able to take con-
tinuous action for each parameter such that fi ∈ (0, F],
hi1 ∈ (0, 1], ai ∈ [−1, 1], wi0 ∈ (0, 1], wi1 ∈ (0, 1] and
bi ∈ [−1, 1].

State Space Sti: Sti = [E(θk), E(θk
i), |Di|, N], where

Di =
∑

j∈Z+
mi

Dij and N is the total number of edge devices
connected to Pi. E(θk) and E(θk

i) are the current evaluation
of learnt global model and local model, respectively. Please
note E(θk) is calculated after the global aggregation. It is
important to highlight that |Di| and N are actually constant.
Normally, constants in state in RL are meaningless, however,
|Di| and N are crucial here to describe the edge server, so that
other edge servers with similar setting can use the experience
of Ai, e.g. (state, action) pairs. Future search can propose more
sophisticated descriptive variables as substitutions of |Di| and
N .

Reward R: The reward is to evaluate how the actions Ai

taken affect both its local model and the final global model.
Therefore, R is calculated after the global aggregation when
we evaluate the aggregated global model. Let E(θk−1) be the
initial local model performance before it is trained by Pi at
this global aggregation round k. We define a local reward Rl

as Equation 10, to denote the immediate reward for gaining
improvement of local model.

Rl = p ∗ [E(θk
i)− E(θk−1)] ∗ E(θk

i) (10)

p is a constant coefficient, E(θk
i) − E(θk−1) reflects how

much the local model on Pi is improved during this round of
global aggregation given action Ai. Considering the model will
become harder to improve when it reaches to a relatively high
performance, ∗E(θk

i) helps increase the reward when model
reaches high performance.

Similarly, we define a global reward Rg to denote the impact
of Ai on the improvement of global model as in Equation 11.

Rg = q ∗ [E(θk)− E(θk−1))] ∗ E(θk) (11)

q is a constant coefficient and E(θk
i)−E(θk−1

i) reflects how
much the local model on Pi is improved during this round of
global aggregation given action Ai.

Finally, the total reward at this step is defined in Equation
as a product of Rl and Rg .

8

Edge Server 𝑃1 Edge Server 𝑃2 Edge Server 𝑃𝑛

…

DDPG Agent 𝒜1 DDPG Agent 𝒜2 DDPG Agent 𝒜𝑛

Shared Replay Buffer
Take ac�on

(set new parameters)

Retrieve buffer
train agent

Local Aggrega�on

Local Aggrega�on Local Aggrega�on

Local Aggrega�on

Local Aggrega�on Local Aggrega�on

One Block Period

Local Reward Local Reward Local Reward

Global Aggrega�on

Final Reward Final Reward Final Reward

Global Reward

Add previous state, ac�on, current state, final reward to shared buffer

Fig. 8. Multi-Agent with Shared Buffer Deep Reinforcement Learning algorithm

R = Rl ∗Rg (12)

Shared Replay Buffer B: DDPG Agent Ai is able to learn
from past execution history, e.g. replay buffer, with its critic
neural network and actor neural network. The shared repaly
buffer B = {[Stki , Ak

i , R
k, Stk+1

i]|k ∈ Z}. The detail about
how DDPG agents learn from replay buffer is illustrated in
Figure 9.

DDPG Agent 𝒜𝑛

Shared Replay Buffer

Environment

Local/Global Aggrega�ons

Sampled Batch

Target

Online

Actor Cri�c

Ac�on 𝐴𝑛
𝑘

Network Updates

outputs

outputs

Fig. 9. Illustration of DDPG Algorithm

V. EXPERIMENTS

In this section, we evaluate the performance of proposed
Blockchain-empowered Heterogeneous Multi-Aggregator Fed-
erated Learning Architecture on 3 common real-world
datasets. We then evaluate the effectiveness of Multi-Agent
with Shared Buffer Deep Reinforcement Learning algorithm
(MASB-DRL) by comparing it with two baselines. We finally

evaluate the robustness of Performance-based Byzantine Con-
sensus Mechanism (PBCM).

A. Baselines

• Central: Traditional centralized training mode, all data
are located on a powerful server and trained on single
machine.

• FedAvg [5]: Uses the proposed BMA-FL architecture,
but all parameters are fixed in all rounds. i.e. Ai =
[fi, hi1, ai, wi0, wi1, bi] = [1, 1, 1, 1, 1, 1],∀i ∈ N . Both
local aggregation and global aggregation use FedAvg
algorithm.

• Random: Uses the same proposed BMA-FL architecture,
but after first round, parameters in Ai,∀i ∈ N , are
randomly picked within the value boundaries.

• BMA-FL: Uses BMA-FL architecture and our proposed
MASB-DRL method. Deep reinforcement learning agents
will learn the best parameters based on shared experience
after each round and take the best actions in next round.

In the following sections, all results are reported as the average
of 10 repeated executions.

B. Datasets

We use three datasets: MNIST [41], FashionMNIST [42]
and CIFAR-10 [43] which are popular in machine learning
and federated learning research. We conduct image classifica-
tion tasks on the datasets as our federated learning task for
evaluation.

• MNIST: Contains a training set of 60,000 image examples
and a test set of 10,000 image examples of handwritten

9

digits (from 0-9). Each example is a 28x28 grayscale
image.

• FashionMNIST: Contains of a training set of 60,000
examples and a test set of 10,000 examples of different
cloth styles (e.g. T-shirt, Trouser, etc.). Each example is
a 28x28 grayscale image, associated with a label from 10
classes.

• CIFAR-10: Contains a training set of 50,000 image
exmaples and a test set of 10,000 image examples of
different objects (e.g. Airplane, Cat, Ship, etc.). Each
example is a 32x32 color image, associated with a label
from 10 classes.

We choose the above three datasets to simulate different task
difficulty levels as easy, medium and hard, respectively. For
MNIST and FashionMNIST we aim to train a neural network
as containing two convolutions layer, two dropout layer and
two linear layer as suggested in Pytorch’s official manual1.
For CIFAR-10, we aim to train a ResNet9 model2.

C. Experiments Settings

We implemented a Blockchain-empowered Heterogeneous
Multi-Aggregator Federated Learning Architecture (BMA-
FL) with one model requester, five edge servers as local
aggregators. The five edge servers are connected with
2, 4 ,6, 8 and 10 edge devices respectively. The CPU
speed cij of each edge device are also varied, and is set
(1.0, 0.5), (2.5, 2.0, 3.0, 2.0), (2.5, 3.0, 0.5, 0.5, 3.0, 3.0),
(3.0, 2.5, 2.0, 2.5, 3.5, 3.5, 3.0, 3.5),
(2.0, 3.5, 2.0, 1.0, 0.5, 2.0, 3.5, 1.0, 3.5, 3.5) respectively.
The global aggregation frequency F = 2.

All the training sets from three datasets are manually
divided unevenly and in heterogeneous label distribution (Non-
IID) on each edge device. The test sets are treated as D, which
is from model requester U for evaluating the final performance
of trained model. In PBCM, ∆1 = 2 and ∆2 = 1. The
offloading penalty δ = 4.

D. Convergence Evaluation

We first evaluate the performance of proposed MBA-FL on
training machine learning models. Figure 10 shows how the
BMA-FL converges on training the three models on above
three datasets.

We use Accuracy as the metric to evaluate the final
converged global models. The comparison among baselines
are reported in Table II. We can see all federated learning
architecture show slightly lower performance than traditional
centralized training schema. This is because the gradients can
not be accurate propagated to all data samples and the Non-
IID data distribution brings challenge on generalizability of
trained models. As image classification on CIFAR-10 is the
hardest task among all three, the decentralized baselines show
the most accuracy gap to the centralized training architecture
on CIFAR-10. data Among all FL architecture, our proposed
BMA-FL can achieve the best performance. This demonstrates

1https://github.com/pytorch/examples/tree/main/mnist
2https://github.com/davidcpage/cifar10-fast

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Aggregation Times

0.35

0.40

0.45

0.50

0.55

M
od

el
 Tr

ai
ni

ng
 L

os
s (

M
NI

ST
/Fa

sh
io

nM
NI

ST
)

+2.5714e4

5.7

5.8

5.9

6.0

6.1

6.2

M
od

el
 Tr

ai
ni

ng
 L

os
s (

CI
FA

R-
10

)

+1.428e4

MNIST
FashionMNIST
CIFAR-10

Fig. 10. The trained model loss after each global aggregation in BMA-FL

our proposed deep reinforcement learning algorithm MASB-
DRL can effectively learn better training strategies in BMA-
FL, aiding the aggregators in BMA-FL better decide local ag-
gregation frequency and balance the weights for the collected
models at local aggregation.

TABLE II
THE PERFORMANCE PROPOSED FL ARCHITECTURE

Method MNIST FashionMNIST CIFAR-10
Central 99.18% 93.05% 93.37%
FedAvg 99.05% 91.87% 90.50%
Random 99.01% 91.20% 89.88%

BMA-FL 99.10% 92.04% 91.70%

E. Performance of MASB-DRL

Figure 11 shows the model accuracy on test datasets after
each global aggregation. As the blockchain generating fre-
quency is fixed and each block generation produces single
global model consensus, therefore the less global aggregation
rounds before convergence means less time spent on training.

In Figure 11(a), three methods show marginal differences.
Even randomly choosing the parameters does not have too
much negative impact on the result. This is because image
classification task on MNIST dataset is easy and not sensitive
the parameters. Figure 11(b) and Figure 11(c) shows more
clear difference among three algorithms. It is obvious that
our proposed BMA-FL shows faster convergence speed than
FedAvg and “Random”. More specifically, on FashionMNIST
dataset, BMA-FL used averagely only 20 global aggregation
rounds to reach the performance of FedAvg at 25th global
aggregation round, which means BMA-FL is 20% faster than
FedAvg on FashionMNIST dataset. In addition, on the CIFAR-
10 dataset, where image classification is much harder than
MNIST and FashionMNIST, BMA-FL used only 14 aggrega-
tion rounds to reach the performance of FedAvg at 20th global
aggregation round, which means BMA-FL is 30% faster than
FedAvg on CIFAR-10 dataset. Taking all three dataset into
account, we can conclude that harder task will benefit more
from BMA-FL achitecure.

These comparative results underscore MASB-DRL’s profi-
ciency in expediting the federated learning process. By guiding

10

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Global Aggregation Rounds

0.95

0.96

0.97

0.98

0.99

1.00
Te

st
 A

cc
ur

ac
y

FedAvg
Random
BMA-FL

(a) MNIST

0 5 10 15 20 25
Global Aggregation Rounds

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

ur
ac

y

FedAvg
Random
BMA-FL

(b) FashionMNIST

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Global Aggregation Rounds

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

FedAvg
Random
BMA-FL

(c) CAFIR-10

Fig. 11. Model Convergence Speed Comparison

aggregators to select the optimal local training frequency
and local aggregation weights, MASB-DRL ensures that the
trained local models exhibit reduced over-fitting and enhanced
generalizability on previously unseen testing data.

F. Blockchain Security Analysis

We evaluate the robustness of proposed Performance-based
Byzantine Consensus Mechanism (PBCM) in terms of the fault
tolerance to malicious blockchain nodes. We make first edge
server P1 who is connected to two edge devices among the

five edge servers as a malicious blockchain node, who does
not train model or respond to blockchain consensus communi-
cation either. Table III shows the average count in 10 repeated
execution that each edge server was selected as miner during
40 aggregations when BMA-FL conduct image classification
on FashionMNIST dataset. We can see the malicious node
P1 mostly never been selected as miner, therefore the whole
blockchain system will not be affected by this single malicious
node. In fact, PBFT-based consensus mechanisms are proved
to be secure if there are less than ⌊n−1

3 ⌋ malicious blockchain
nodes, where n is the total number of blockchain nodes [39].

VI. CONCLUSION

This paper studied multi-aggregator federated learning prob-
lem in edge computing which is an under-explored topic.
We proposed Blockchain-empowered Heterogeneous Multi-
Aggregator Federated Learning Architecture (BMA-FL) to
fill the gap. BMA-FL addressed the challenge that The lim-
ited resources on edge devices make them not feasible for
carrying the load for both model training and blockchain
mining, which is often overlooked in related work. To this
end, we proposed a Performance-based Byzantine Consensus
Mechanism (PBCM) which is light-weight and secure for edge
servers to choose honest one for global model aggregation.
Due to the heterogeneity problem that edge devices have
heterogeneous Non-IID data distribution and training speed,
traditional model aggregation methods tend to underperform
in the scenario. We proposed Multi-Agent with Shared Buffer
Deep Reinforcement Learning algorithm (MASB-DRL) that
enables edge servers learning the best training strategy from
past experience. Empirical assessments indicated that BMA-
FL surpasses benchmark models in terms of both training
efficiency and end model performance, which demonstrates
the effectiveness of PBCM and MASB-DRL.

Our study does present areas for potential enhancement and
further exploration. Firstly, data offloading from edge devices
to servers could benefit from a refined strategy, determining
consistent data quantities rather than the binary decision of
uploading all or none of the untrained data each round.
Secondly, while our approach to making the experience buffer
shareable among edge servers involved integrating two server
descriptive variables into the experience instance, this can be
further optimized. Lastly, we still used traditional average
strategy in global aggregation, which can also be further
optimized with learnable aggregation strategies.

REFERENCES

[1] S. V. Sanghami, J. J. Lee, and Q. Hu, “Machine-learning-enhanced
blockchain consensus with transaction prioritization for smart cities,”

TABLE III
TIMES EDGE SERVER ACTS AS BLOCKCHAIN MINER WITH MALICIOUS

P1

Edge Servers # of being a Miner
P1 (Malicious) 0.81

P2 8.73
P3 6.97
P4 9.32
P5 14.17

11

IEEE Internet Things J., vol. 10, no. 8, April 15, pp. 6661–6672, 2023.
[Online]. Available: https://doi.org/10.1109/JIOT.2022.3175208

[2] D. C. Nguyen, M. Ding, Q. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet Things J., vol. 8, no. 16, pp. 12 806–12 825, 2021.
[Online]. Available: https://doi.org/10.1109/JIOT.2021.3072611

[3] D. C. Nguyen, P. Cheng, M. Ding, D. López-Pérez, P. N. Pathirana,
J. Li, A. Seneviratne, Y. Li, and H. V. Poor, “Enabling AI in future
wireless networks: A data life cycle perspective,” IEEE Commun. Surv.
Tutorials, vol. 23, no. 1, pp. 553–595, 2021. [Online]. Available:
https://doi.org/10.1109/COMST.2020.3024783

[4] S. K. Lo, Y. Liu, Q. Lu, C. Wang, X. Xu, H. Paik, and L. Zhu,
“Toward trustworthy AI: blockchain-based architecture design for
accountability and fairness of federated learning systems,” IEEE
Internet Things J., vol. 10, no. 4, pp. 3276–3284, 2023. [Online].
Available: https://doi.org/10.1109/JIOT.2022.3144450

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, ser. Proceedings of Machine Learning Research,
A. Singh and X. J. Zhu, Eds., vol. 54. PMLR, 2017, pp. 1273–1282.
[Online]. Available: http://proceedings.mlr.press/v54/mcmahan17a.html

[6] Y. Zhao, J. Zhang, and Y. Cao, “Manipulating vulnerability: Poisoning
attacks and countermeasures in federated cloud-edge-client learning for
image classification,” Knowl. Based Syst., vol. 259, p. 110072, 2023.
[Online]. Available: https://doi.org/10.1016/j.knosys.2022.110072

[7] G. Yan, H. Wang, X. Yuan, and J. Li, “Defl: Defending against
model poisoning attacks in federated learning via critical learning
periods awareness,” in Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023,
Washington, DC, USA, February 7-14, 2023, B. Williams, Y. Chen,
and J. Neville, Eds. AAAI Press, 2023, pp. 10 711–10 719. [Online].
Available: https://doi.org/10.1609/aaai.v37i9.26271

[8] F. Zhang, S. Guo, X. Qiu, S. Xu, F. Qi, and Z. Wang,
“Federated learning meets blockchain: State channel-based distributed
data-sharing trust supervision mechanism,” IEEE Internet Things
J., vol. 10, no. 14, pp. 12 066–12 076, 2023. [Online]. Available:
https://doi.org/10.1109/JIOT.2021.3130116

[9] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti:
A blockchain system for private and secure federated learning,” IEEE
Trans. Parallel Distributed Syst., vol. 32, no. 7, pp. 1513–1525, 2021.
[Online]. Available: https://doi.org/10.1109/TPDS.2020.3044223

[10] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial iot,”
IEEE Trans. Ind. Informatics, vol. 16, no. 6, pp. 4177–4186, 2020.
[Online]. Available: https://doi.org/10.1109/TII.2019.2942190

[11] J. Li, Y. Shao, K. Wei, M. Ding, C. Ma, L. Shi, Z. Han, and H. V. Poor,
“Blockchain assisted decentralized federated learning (BLADE-FL):
performance analysis and resource allocation,” IEEE Trans. Parallel
Distributed Syst., vol. 33, no. 10, pp. 2401–2415, 2022. [Online].
Available: https://doi.org/10.1109/TPDS.2021.3138848

[12] A. P. Kalapaaking, I. Khalil, M. S. Rahman, M. Atiquzzaman, X. Yi,
and M. Almashor, “Blockchain-based federated learning with secure
aggregation in trusted execution environment for internet-of-things,”
IEEE Trans. Ind. Informatics, vol. 19, no. 2, pp. 1703–1714, 2023.
[Online]. Available: https://doi.org/10.1109/TII.2022.3170348

[13] Z. Wang, Q. Hu, R. Li, M. Xu, and Z. Xiong, “Incentive
mechanism design for joint resource allocation in blockchain-
based federated learning,” IEEE Trans. Parallel Distributed Syst.,
vol. 34, no. 5, pp. 1536–1547, 2023. [Online]. Available: https:
//doi.org/10.1109/TPDS.2023.3253604

[14] N. Q. Hieu, T. A. Tran, C. L. Nguyen, D. Niyato, D. I.
Kim, and E. Elmroth, “Deep reinforcement learning for resource
management in blockchain-enabled federated learning network,” IEEE
Netw. Lett., vol. 4, no. 3, pp. 137–141, 2022. [Online]. Available:
https://doi.org/10.1109/LNET.2022.3173971

[15] M. Aloqaily, I. A. Ridhawi, and M. Guizani, “Energy-aware blockchain
and federated learning-supported vehicular networks,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 11, pp. 22 641–22 652, 2022. [Online].
Available: https://doi.org/10.1109/TITS.2021.3103645

[16] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When machine learning
meets blockchain: A decentralized, privacy-preserving and secure
design,” in IEEE International Conference on Big Data (IEEE BigData

2018), Seattle, WA, USA, December 10-13, 2018, N. Abe, H. Liu, C. Pu,
X. Hu, N. K. Ahmed, M. Qiao, Y. Song, D. Kossmann, B. Liu, K. Lee,
J. Tang, J. He, and J. S. Saltz, Eds. IEEE, 2018, pp. 1178–1187.
[Online]. Available: https://doi.org/10.1109/BigData.2018.8622598

[17] Y. Qu, L. Gao, T. H. Luan, Y. Xiang, S. Yu, B. Li, and G. Zheng,
“Decentralized privacy using blockchain-enabled federated learning in
fog computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 5171–5183,
2020. [Online]. Available: https://doi.org/10.1109/JIOT.2020.2977383

[18] H. Kim, J. Park, M. Bennis, and S. Kim, “Blockchained on-device
federated learning,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1279–
1283, 2020. [Online]. Available: https://doi.org/10.1109/LCOMM.2019.
2921755

[19] W. Issa, N. Moustafa, B. P. Turnbull, N. Sohrabi, and Z. Tari,
“Blockchain-based federated learning for securing internet of things: A
comprehensive survey,” ACM Comput. Surv., vol. 55, no. 9, pp. 191:1–
191:43, 2023. [Online]. Available: https://doi.org/10.1145/3560816

[20] Y. Wan, Y. Qu, L. Gao, and Y. Xiang, “Privacy-preserving
blockchain-enabled federated learning for b5g-driven edge computing,”
Comput. Networks, vol. 204, p. 108671, 2022. [Online]. Available:
https://doi.org/10.1016/j.comnet.2021.108671

[21] Q. Hu, Z. Wang, M. Xu, and X. Cheng, “Blockchain and federated edge
learning for privacy-preserving mobile crowdsensing,” IEEE Internet
Things J., vol. 10, no. 14, pp. 12 000–12 011, 2023. [Online]. Available:
https://doi.org/10.1109/JIOT.2021.3128155

[22] W. Wang, Y. Wang, Y. Huang, C. Mu, Z. Sun, X. Tong,
and Z. Cai, “Privacy protection federated learning system based
on blockchain and edge computing in mobile crowdsourcing,”
Comput. Networks, vol. 215, p. 109206, 2022. [Online]. Available:
https://doi.org/10.1016/j.comnet.2022.109206

[23] S. Otoum, I. A. Ridhawi, and H. T. Mouftah, “A federated learning and
blockchain-enabled sustainable energy trade at the edge: A framework
for industry 4.0,” IEEE Internet Things J., vol. 10, no. 4, pp. 3018–3026,
2023. [Online]. Available: https://doi.org/10.1109/JIOT.2022.3140430

[24] L. Jiang, H. Zheng, H. Tian, S. Xie, and Y. Zhang, “Cooperative
federated learning and model update verification in blockchain-
empowered digital twin edge networks,” IEEE Internet Things
J., vol. 9, no. 13, pp. 11 154–11 167, 2022. [Online]. Available:
https://doi.org/10.1109/JIOT.2021.3126207

[25] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efficient federated learning and permissioned
blockchain for digital twin edge networks,” IEEE Internet Things
J., vol. 8, no. 4, pp. 2276–2288, 2021. [Online]. Available:
https://doi.org/10.1109/JIOT.2020.3015772

[26] L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, and W. Xiao,
“CREAT: blockchain-assisted compression algorithm of federated
learning for content caching in edge computing,” IEEE Internet Things
J., vol. 9, no. 16, pp. 14 151–14 161, 2022. [Online]. Available:
https://doi.org/10.1109/JIOT.2020.3014370

[27] M. Meng and Y. Li, “Sfedchain: blockchain-based federated learning
scheme for secure data sharing in distributed energy storage networks,”
PeerJ Comput. Sci., vol. 8, p. e1027, 2022. [Online]. Available:
https://doi.org/10.7717/peerj-cs.1027

[28] S. Fan, H. Zhang, Y. Zeng, and W. Cai, “Hybrid blockchain-based
resource trading system for federated learning in edge computing,”
IEEE Internet Things J., vol. 8, no. 4, pp. 2252–2264, 2021. [Online].
Available: https://doi.org/10.1109/JIOT.2020.3028101

[29] H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and
Y. Zhang, “Blockchain and federated learning for collaborative
intrusion detection in vehicular edge computing,” IEEE Trans. Veh.
Technol., vol. 70, no. 6, pp. 6073–6084, 2021. [Online]. Available:
https://doi.org/10.1109/TVT.2021.3076780

[30] D. C. Nguyen, S. Hosseinalipour, D. J. Love, P. N. Pathirana,
and C. G. Brinton, “Latency optimization for blockchain-empowered
federated learning in multi-server edge computing,” IEEE J. Sel. Areas
Commun., vol. 40, no. 12, pp. 3373–3390, 2022. [Online]. Available:
https://doi.org/10.1109/JSAC.2022.3213344

[31] J. Lee and W. Kim, “Dag-based blockchain sharding for secure
federated learning with non-iid data,” Sensors, vol. 22, no. 21, p. 8263,
2022. [Online]. Available: https://doi.org/10.3390/s22218263

[32] X. Qu, S. Wang, Q. Hu, and X. Cheng, “Proof of federated learning:
A novel energy-recycling consensus algorithm,” IEEE Trans. Parallel
Distributed Syst., vol. 32, no. 8, pp. 2074–2085, 2021. [Online].
Available: https://doi.org/10.1109/TPDS.2021.3056773

[33] Y. Wang, H. Peng, Z. Su, T. H. Luan, A. Benslimane, and
Y. Wu, “A platform-free proof of federated learning consensus
mechanism for sustainable blockchains,” IEEE J. Sel. Areas Commun.,

12

vol. 40, no. 12, pp. 3305–3324, 2022. [Online]. Available: https:
//doi.org/10.1109/JSAC.2022.3213347

[34] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A
blockchain-based decentralized federated learning framework with
committee consensus,” IEEE Netw., vol. 35, no. 1, pp. 234–241, 2021.
[Online]. Available: https://doi.org/10.1109/MNET.011.2000263

[35] Y. Chen, J. Li, F. Wang, K. Yue, Y. Li, B. Xing, L. Zhang,
and L. Chen, “DS2PM: A data-sharing privacy protection model
based on blockchain and federated learning,” IEEE Internet Things
J., vol. 10, no. 14, pp. 12 112–12 125, 2023. [Online]. Available:
https://doi.org/10.1109/JIOT.2021.3134755

[36] Y. Lin, Z. Gao, H. Du, J. Kang, D. Niyato, Q. Wang, J. Ruan, and
S. Wan, “Drl-based adaptive sharding for blockchain-based federated
learning,” IEEE Transactions on Communications, pp. 1–1, 2023.

[37] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Blockchain empowered asynchronous federated learning for secure
data sharing in internet of vehicles,” IEEE Trans. Veh. Technol.,
vol. 69, no. 4, pp. 4298–4311, 2020. [Online]. Available: https:
//doi.org/10.1109/TVT.2020.2973651

[38] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[39] J. Guo, X. Ding, and W. Wu, “An architecture for distributed energies
trading in byzantine-based blockchains,” IEEE Trans. Green Commun.
Netw., vol. 6, no. 2, pp. 1216–1230, 2022. [Online]. Available:
https://doi.org/10.1109/TGCN.2022.3142438

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1509.02971

[41] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2,
2010.

[42] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” CoRR, vol.
abs/1708.07747, 2017. [Online]. Available: http://arxiv.org/abs/1708.
07747

[43] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

Xiao Li (Student Member, IEEE) received his
B.S. and M.S degree in Software Engineering from
Dalian University of Technology, China in 2016
and 2019, respectively. He is currently pursuing the
Ph.D. degree with the Department of Computer Sci-
ence, The University of Texas at Dallas, Richardson,
TX, USA. His current research interests include data
mining, machine learning, distributed systems and
blockchain.

Weili Wu (Senior Member, IEEE) received the M.S.
and Ph.D. degrees from the Department of Computer
Science, University of Minnesota, Minneapolis, MN,
USA, in 1998 and 2002, respectively. She is cur-
rently a Full Professor with the Department of Com-
puter Science, The University of Texas at Dallas,
Richardson, TX, USA. Her research mainly deals
in the general research area of data communication
and data management. Her research focuses on the
design and analysis of algorithms for optimization
problems that occur in wireless networking environ-

ments and various database systems.

