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Abstract
Bitcoin has became one of the most popular investment asset recent years. The volatil-
ity of bitcoin price in financial market attracting both investors and researchers to study
the price changing manners of bitcoin. Existing works try to understand the bitcoin
price change bymanually discovering features or factors that are assumed to be reasons
of price change. However, the trivial feature engineering consumes human resources
without the guarantee that the assumptions or intuitions are correct. In this paper,
we propose to reveal the bitcoin price change through understanding the patterns of
bitcoin blockchain transactions without feature engineering. We first propose k-order
transaction subgraphs to capture the patterns. Then with the help of machine learn-
ing models, Multi-Window Prediction Framework is proposed to learn the relation
between the patterns and the bitcoin prices. Extensive experimental results verify the
effectiveness of transaction patterns to understand the bitcoin price change and the
superiority of Multi-Window Prediction Framework to integrate multiple submodels
trained separately on multiple history periods.
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1 Introduction

Since the bitcoin blockchain was announced by Nakamoto in 2008 (Nakamoto 2009),
the amazing distributed data processing ability has attracted increasing attention of
both public and researchers. The bitcoin is originally defined as a special token, namely
cryptocurrency, traded in the Bitcoin blockchain, which is a reward to the miner for
completing the ledger recording job.

Bitcoin becomes a popular product in public financial market because it can be
traded with other products e.g. stocks, gold and crude oil or regular currencies such
as US Dollar or British Pound (Vassiliadis et al. 2017). Different from other products,
bitcoin is of strikingly volatility in price (Aalborg et al. 2019; Balcilar et al. 2017).
Investors have devoted huge amount of investment into bitcoin market seeking for the
profiting opportunity from the volatility of bitcoin price (Yermack 2013).

Bitcoin price forecasting models are eagerly desired to provide the suggestions on
whether the bitcoin price will rise or fall (Chen et al. 2020b; Yao et al. 2019; Koo and
Kim 2021) to help investors make decisions that whether they should buy in or to sell
out bitcoins. However, bitcoin price forecasting models usually require well-designed
features to understand the reason of bitcoin price change, which is a challenging task.
The basic bitcoin price forecasting models only aim to predict the price trend. The
results of trend prediction can only present limited information to investors, while
investors always desire more accurate and more informative suggestions on the price,
so that investors can make further analysis to evaluate how much the price change
will impact on their assets. For example, if a trend prediction system suggests that
the price will drop, investors may be panic and sold out all their bitcoins. However, if
they can know that the price will only drop slightly, investors may choose to wait for a
future revival, which can avoid the loss of their asset. However, there are only handful
works studying the accurate price prediction problem to predict the exact prices of
bitcoin (Abay et al. 2019; Akcora et al. 2018; Mallqui and Fernandes 2019; Cerda
and Reutter 2019). Therefore in this paper, we focus on the accurate bitcoin price
prediction problem that is much more critical and useful in practice.

To make the predictions of price, machine learning models are widely adopted.
Well-designed features are fed into the sophisticated machine learning models. Exist-
ing work has proposed various features to encode the latent properties behind the
Bitcoin price change from multiple aspects.

Some intuitive features of bitcoin comes frombitcoin blockchain that are the indexes
reflecting the transaction information, such as mean degree of addresses, number of
new addresses and total coin amount transferred in transactions (Abay et al. 2019).
Maesa et al. (2016) build users transferring graph, and analyze the latent features of
bitcoin blockchain from a graph perspective. Gyamerah (2021) create 30 technical
indicators to represent bitcoin price feature, and Support Vector Regression (SVR)
model is applied to make price prediction after the indicators are selected by designed
algorithm. Mallqui and Fernandes (2019) consider the bitcoin price is also related
to current status of global financial market. They take into account economic indi-
cators to reflect the features of the global financial market, such as crude oil future
prices, gold future prices, S&P500 future, NASDAQ future, and DAX index, which
are features from financial perspective. Cerda and Reutter (2019) and Shahzad et al.
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(2021) introduce public opinion features into bitcoin price prediction through mining
the sentiment from social media like Twitter. Yao et al. (2019) attempt to learn the
opinion features from news articles. The assumption lays behind these public opinion
features is that people’s action of buying or selling bitcoin and bitcoin’s market value
is impacted by the positive and negative opinions delivered by public through news
articles and social medias.

Though features from many aspects has been investigated in literature, including
blockchain network, financial market information, and even public opinions, it is still
unclear what features or factors are useful, and how the bitcoin price is influenced
by those features. In addition, manually discovering or creating the features not only
relies on heuristics but also consumes notable amount of labour resource. In this paper,
we develop features directly from bitcoin blockchain transactions without engineer-
ing features outside bitcoin blockchain, e.g. financial market information, and public
opinions. The reason that we can abandon those features outside blockchain is that if
the external factors, such as public sentiment or news, contribute to the bitcoin price
change, theywill eventually be reflected by the changes in the transactions and transac-
tion structures of the Bitcoin blockchain. In other words, no matter how the the actions
of people are impacted by those features, the different actions taken by people will be
reflected by the changes in the Bitcoin blockchain. In this paper, we emphasize that
the structure of Bitcoin blockchain encodes abundant transaction patterns information
that can interpret the impacts of various factors or features on the bitcoin price change.

We propose blockchain transaction graph to understand transaction patterns. The
blockchain transaction graph reveals the patterns of transactions in bitcoin blockchain
which is capable to depict market trend and status. As mentioned in Akcora et al.
(2018), if the input addresses of a transaction are more than the output addresses, then
the transaction is gathering bitcoins, indicating more investment is done. On the other
hand, if the input addresses of a transaction are less than the output addresses, then
the transaction is distributing the bitcoins, indicating some users leaving the bitcoin
market. Therefore by discovering these transaction patterns with proposed bitcoin
transaction graph and the prediction framework, we can extract and use valuable
information in bitcoin blockchain transaction history that can hardly be discovered by
manual feature engineering.

To effectively mining the transaction patterns, we employ the transaction graph
to represent the bitcoin blockchain transaction flow. We further propose the k-order
transaction subgraph to encode the transaction pattern. With different k, different
level of transaction patterns can be captured. Finally the pattern occurrence matrix
is proposed to store the frequency of the patterns occurred in blockchain, which can
represent the features of blockchain for a given period.

The main contributions of the paper can be summarized as follows:

– We extend the concept of the transaction graph in literature to k-order Transaction
Subgraph, to represent the transaction feature of blockchain at different scopes.

– We propose a transaction subgraph based feature to encode the implicit patterns
behind the transactions, then analyze the feature from both semantic view and
mathematical view.
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– We propose a novel machine learning-based Multi-Window Prediction Frame-
work that can effectively learn the features from different history periods.

– We evaluate the proposed method on real bitcoin price historical data, and the
results demonstrate the superiority comparing to recent state-of-the art methods.

The rest of this paper is organized as follows: First, we review related recent work in
Sect. 2. Then in Sect. 3, we propose the k-order transaction subgraph and transaction
subgraph feature from both semantic and mathematical views. Next, Sect. 4 presents
the Multi-Window Prediction Framework that takes the subgraph features as feed. In
Sect. 5 we evaluate the effectiveness of proposed subgraph feature and the prediction
framework. Finally, Sect. 6 concludes this paper.

2 Related work

Though blockchain technology is now popular and has been applied in many real-
world scenarios (Ding et al. 2022, 2021; Guo et al. 2021b, c, 2022; Luo et al. 2020).
The study on the first blockchain system, namely Bitcoin blockchain system is never
stopped. One of the most active research topic is bitcoin price prediction. The key
issue of bitcoin price prediction or forecasting task is to discover and analysis deter-
minants of bitcoin price. Since Kristoufek (2013) studied the connection between
Bitcoin and search queries on Google Trends and Wikipedia, the determinants study
has developed rapidly. Influence of social media or public opinions are also studied
(Cerda and Reutter 2019; Yao et al. 2019; Mallqui and Fernandes 2021). Balfagih and
Keselj (2019) extensively explored the relationship between bitcoin tweets and the
prices, which utilizes different language modeling approaches, such as tweet embed-
ding and N-Gram modeling. Mittal et al. (2019) find that there is a relevant degree of
correlation of Google Trends and Tweet volume data with the price of Bitcoin, while
no significant relation with the sentiments of tweets is discovered. Burnie and Yilmaz
(2019) analyzed particular relevance of topics on social media for the high volatility of
bitcoin price. Guo et al. (2021a) take the features from both Google Trends and bitcoin
blockchain transaction records. However only the transaction amount of each single
transaction is considered in the model ignoring many other information encoded in
the transactions.

Ciaian et al. (2016) are the first to studies Bitcoin price formation by consider-
ing both traditional features in market and digital currencies specific factors from the
economical aspects. Aggarwal et al. (2019) attempt to compare the effects of determi-
nants including bitcoin factors, social media and the Gold price. Pieters and Vivanco
(2017) study the difference in Bitcoin prices across 11 different markets, and present
that standard financial regulations can have a non-negligible impact on the market for
Bitcoin.

Georgoula et al. (2015) and Kristoufek (2015) studies the difference of long-term
and short-term impact of the determinants on bitcoin price. Kristoufek (2015) points
out that time and frequency are both crucial factors for Bitcoin price dynamics since the
bitcoin price evolves overtime, and examines how the interconnections from various
sources behave in both time and different frequencies. Chen et al. (2020a) analyze
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the dependence structure between price and its influence factors, and based on copula
theory, the bitcoin price has different correlation structures with influence factors.

Bitcoin Blockchain structural information is alsomined for discovering the features
and determinants of the bitcoin prices. Akcora et al. (2018) propose a bitcoin graph
model,whereChainlets is used to represent graph structures in theBitcoin.A k-chainlet
is defined as a subgraph of a bitcoin blockchain that contains exactly k transaction
nodes. Akcora et al. (2018) employ both the features derived from chainlets and
heuristic features to fed in machine learning model for price prediction. In Akcora
et. al’s further work (Abay et al. 2019), they propose occurrence matrix and amount
matrix to encode the topological features of chainlets.

In this paper, though we adopt the same concept of occurrence matrix to encode the
topological features, we design a totally different graph representation model, namely
k-order transaction graph to reveal the topological features of Bitcoin Blockchain.

There are also several theoretical (Kyle 1985; Llorente et al. 2002; Schneider 2009)
and empirical studies (Balcilar et al. 2017; Koutmos 2018; Naeem et al. 2020) that
have looked at Bitcoin transactions focusing on the volume-return causality in the
Bitcoin market. However, these studies mostly focus on trading volumes or number of
unique bitcoin transactions and utilize traditional regression techniques. In this paper,
we extract patterns from bitcoin transactions using the graph models and take our
analysis further with machine learning techniques.

The determinants can be considered as features behind the bitcoin price change, then
variousmachine learningmethods canbe adopted to learn the patterns from the features
and make bitcoin price forecasting (Chen et al. 2020b; Yogeshwaran et al. 2019; Sin
and Wang 2017). Felizardo et al. (2019) and Chen et al. (2019) compare several
popular machine learning methods in bitcoin price prediction task that ARIMAmodel
performs better than Neural network when the price is relatively stable and support
vector machine regression is generally the best model among all machine learning
methods. Hashish et al. (2019) try to tackle the volatility of cryptocurrencies with
Hidden Markov Models and Long Short Term Memory (LSTM) network is adopted
to predict the future price movements. Shin et al. (2021) use Ensemble-based LSTM
taking history bitcoin price as input, that can predict minute-level bitcoin price. Guo
et al. (2021d) combine Multi-scale Residual Convolutional (MRC) block with LSTM
fedwith bitcoin history price as well as external features such as S&P 500 Index, GVZ,
VIX. Nguyen and Le (2019) propose hybrid methods between ARIMA and machine
learning to predict the bitcoin next day price. Rajakumar et al. (2022) propose to use
Deep Brief Network to solve minute-by-minute bitcoin price. Cavalli and Amoretti
(2021) use Convolutional Neural Network (CNN) to predict bitcoin price trend.

3 k-order transaction subgraph and subgraph occurrencematrix

Existing works mostly manually define the features based on domain knowledge for
the prediction. Although the transparently defined feature are easy to interpret, manu-
ally defining the feature is not possible to mining the latent information in the bitcoin
blockchain. In order to capture blockchain transaction features, we first define trans-
action graph to represent the blockchain transaction information.
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Fig. 1 A simple transaction
graph

There are preliminary concepts similar to transaction graph in previous literature
(Abay et al. 2019; Maesa et al. 2016), here we formally define the transaction graph
as following.

Definition 1 (Transaction Graph) : A transaction graph is a directed bipartite graph
G = (A, T , E), where A is the set of addresses in Blockchain, T is the set of transac-
tions of blockchain, and E is the set of direct link from ai ∈ A to tk ∈ T , indicating ai
is one of the inputs of tk , or from tk ∈ T to a j ∈ A, indicating a j is one of the outputs
of tk .

Figure 1 presents an example of a transaction graph formed by 8 addresses and 4
transactions where the directed links represent the flow of bitcoins.

3.1 k-order transaction subgraph

To specify characteristic of each transaction in the transaction graph under different
length of bitcoin flow, we define the k-order transaction subgraph of each transaction.
For a transaction ti , we define the k-order transaction subgraph of ti as a special
transaction graph Gk

ti that contains only ti and the transactions that spend the outputs
of ti in next k − 1 steps, along with the corresponding addresses connecting to these
transactions. The formal mathematical definition is given in Definition 2.

Definition 2 (K -order transaction subgraph) : The K -order transaction subgraph of a
transaction ti is a graphGk

ti = (Ak, T k, Ek), where T k = {t j | ∃ an ∈ Ak−1, (an, t j ) ∈
E and ∃(tl , an) ∈ Ek−1 f or tl ∈ T k−1}, Ak = {an|an ∈ Ak−1 or (t j , an) ∈
E where t j ∈ T k}. Specially, if k = 1, G1

ti = (A1, T 1, E1), where A1 =
{an|(an, ti ) ∈ E or (ti , an) ∈ E}, T 1 = {ti } and E1 = {(an, ti ) or (ti , an)|an ∈ A1}.

When k = 1, the K -order transaction subgraph of ti contains only ti along with
its input addresses and output addresses. With k increases, the k order transaction
subgraph includes more succeeding transactions of ti , which will trace further along
with the bitcoin flow output by transaction ti . Figure 2 shows some examples k-order
transaction graphs that extracted from Fig. 1. Figure 2a and c shows the 1-order and
2-order transaction subgraph of the transaction t1, respectively. Figure 2b and d shows
the 1-order and 2-order transaction subgraph of the transaction t2, respectively.
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(a)

(d)

(b)

(c)

Fig. 2 The 1 order and 2-order transaction subgraph of t1 and t2 in Fig. 1

The k-order transaction subgraphs have different patterns by considering the dif-
ferent structures of them. To differentiate the patterns, we use the number of inputs
and outputs addresses of the k-order transaction subgraphs. If two k-order transaction
graphs have the same number of input addresses and the output address, we consider
they are of the same pattern, since they are showing the similar bitcoin flow and similar
real-word trading actions.

Briefly, the input addresses of a k-order transaction subgraph Gk
ti are the addresses

that give inputs to the transaction ti , the output addresses of Gk
ti are the addresses that

accepts the outputs of the transactions at the last hop in Gk
ti . Definition 3 presents the

formal definition of input and output address of a K -order transaction subgraph.

Definition 3 (Input and Output addresses of K -order transaction subgraph) : The
input address set and output address set of K -order transaction subgraphGk

ti isIGk
ti
and

OGk
ti
, respectively. IGk

ti
= {an|∃(an, t j ) ∈ Ek, t j ∈ T k and ∀tk ∈ T k, (tk, an) /∈ Ek}.

OGk
ti

= {an|∃(tk, an) ∈ Ek, tk ∈ T k and ∀t j ∈ T k, (an, t j ) /∈ Ek}.

For example, for the 1-order transaction subgraph of t1 in Fig. 2a, the input addresses
are {a1, a2} = IG1

t1
, and the output address is {a5} = OG1

t1
. For higher orders of

transaction subgraph such as 2-order transaction subgraphG2
t1 of t1 in Fig. 2c, the input

and output addresses may not as intuition. Specifically, {a1, a2} = IG2
t1
are the input

addresses of G2
t1 , {a8} = OG2

t1
is the corresponding output address. Please note that

a5 is not an input nor an output address, the function of a5 in G2
t1 is only for transition

of Bitcoins. Similarly, in Fig. 2d, the input addresses set of G2
t2 is {a3} = IG2

t2
, and

the output addresses set of G2
t2 is {a8} = OG2

t2
.

Following the concepts of input addresses set IGk
ti
and out addresses set OGk

ti
of

k-order transaction graphGk
ti , we now can define the pattern ofGk

ti . The k-order trans-
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action graph of transaction ti , e.g. Gk
ti belongs to the pattern: G

k
(m,n) = {Gk

ti ||IGk
ti
| =

m, |OGk
ti
| = n}, where | · | denotes the size of a set.

For a given specific period T , we can create a transaction graph G = (A, T , E)

to represent the transactions among addresses. Then for each transaction ti ∈ T , we
can derive k-order transaction subgraph Gk

ti for different k. Those obtained k-order
transaction subgraphs may belong to different patterns represent different real-world
trading scenarios, policies or actions. For the example in Fig. 2, the 2-order transaction
subgraph of t1,G2

t1 belongs to the patternG
2
(2,1), while the 2-order transaction subgraph

of t2, G2
t2 belongs to the pattern G2

(1,1).
We believe these different patterns are able to reveal the characteristics of each

transaction in corresponding blockchain during a given period. Moreover, the patterns
obtained under different order k can reveal different levels of such information since
larger k allows the pattern to trace farther transactions. We denote the pattern based on
the number of input addresses and output addresses to make the patters easily encoded
into matrices, and be easily adopted as the features of the corresponding transaction
graph.

To understand the characteristics bitcoin blockchain during a period, we propose
to discover two key factors from patterns of all k-order transaction graph Gk

ti of every
transaction ti in transaction graphG 1) the different types of transaction graph patterns
occurred during that period, and 2) the occurrence time of these different patterns. To
obtain these two factors simultaneously,We extend the general concept of “occurrence
matrix” (Abay et al. 2019) to k-order pattern occurrence matrix. The k order pattern
occurrence matrix of a blockchain in a period is denoted as OCk , where the entry
of OCk is OCk

(m,n) = |Gk
(m,n)| which is the number of k-order transaction graphs

belonging to the pattern Gk
(m,n).

For different k, multiple k-order pattern occurrence matrices can be obtained.
We unfold the k-order pattern occurrence matrices to concatenate OCk for k =
1, 2, 3, . . . , s as the feature v of blockchain during a given period. In this paper, we
aim to study the Bitcoin Price Prediction problem by understanding the transaction
graph feature v: use the feature vector v that is derived the transaction graph of the
bitcoin blockchain historical data in a given period [t − s, t], to predict the bitcoin
price at future timestamp t ′ = t − s + h, Pt ′ . h is the prediction horizon. Formally,
the Bitcoin Price Prediction problem in this paper is defined as Definition 4.

Definition 4 (Bitcoin Price Prediction) : Given historical bitcoin price and bitcoin
blockchain data in time period [t − s, t], where s ∈ N+. Let Pt denotes the price of
bitcoin at the timestamp t . The bitcoin price prediction problem is to predict the future
bitcoin price at timestamp t ′ = t + �t , where �t ≥ 0, e.g. Pt ′ .

3.2 Computation of occurrencematrix

The above sections give a comprehensive interpretation of the occurrence matrix.
In this section, we propose an iterative manner for applicable implementation by
multiplying matrices to efficiently compute the occurrence matrix.
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Fig. 3 The H matrix of
transaction graph in Fig. 1

Fig. 4 The P matrix of
transaction graph in Fig. 1

Fig. 5 The Q matrix of
transaction graph in Fig. 1

Let H ∈ R
|T |×|T | be the matrix denoting the input addresses of each transaction,

The entry of H is HAi ,ti = 1, if Ai is the set of input addresses of transaction ti ,
otherwise HAi ,ti = 0. Figure 3 shows the H matrix of transaction graph in Fig. 1.

Let P ∈ R
|A|×|T | be thematrix denoting the input relationship between each address

ai and each transaction t j . Pi, j = 1 if ai is one of the input addresses of transaction
t j , otherwise, Pi, j = 0. Figure 4 shows The P matrix of transaction graph in Fig. 1.

Then let Q ∈ R
|T |×|A| be the matrix denoting the output relationship between each

address a j and each transaction ti . Qi, j = 1 if a j is one of the output addresses of
transaction ti , and Qi, j = 0 otherwise. Figure 5 shows The Q matrix of transaction
graph in Fig. 1.

For calculating the k order occurrence matrix OCk , we first need to derive the
transition matrix M ∈ R

|T |×|A| for the k order transaction graph, which is derived
through Eq. (1).

Mk = H(QP)k−1Q (1)

The entry of matrix Mk , Mk
Ai ,a j

> 0 if there is a flow from transactions ti , whose

input addresses set is Ai , to address a j , otherwise, Mk
Ai ,a j

= 0. In fact, we can easily
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Fig. 6 1 order transition matrix M1 of transaction graph in Fig. 1

Fig. 7 2 order transition matrix M2 of transaction graph in Fig. 1

understand that the Mk
Ai ,a j

denotes how many possible path from transaction ti to
address a j in the k order transaction graph of transaction ti .

Therefore |Ai | is the number of input addresses of the k order transaction graph
of ti , and

∑
a j∈A I{Mk

Ai ,a j
> 0} is the number of output addresses of the k order

transaction graph of ti . I{∗} = 1 if the condition ∗ is satisfied, and I{∗} = 0 otherwise.
Now each entry of OCk , OCk

(m,n), can be calculated based on the k order transition

matrix Mk through Eq. (2).

OCk
(m,n) =

∑

Ai

I{|Ai | = m &
∑

a j∈A

I{Mk
Ai ,a j

> 0} = n}, (2)

where Ai is the set of input addresses of transaction ti , namely Ai = {ak |(ak, ti ) ∈ E}.
For the simple example in Fig. 1, if k = 1, the transition matrix M1 is illustrated

in Fig. 6. Then the occurrence matrix OC1 can be easily derived.
OC1

(2,1) = 3, because |{a1, a2}| = |{a4, a5}| = |{a6, a7}| = 2, and
∑

a j∈A I{M1{a1,a2},a j
> 0} = ∑

a j∈A I{M1{a4,a5},a j
> 0} = ∑

a j∈A I{M1{a6,a7},a j
>

0} = 1.
OC1

(1,2) = 1, because |{a3}| = 1, and
∑

a j∈A I{M1{a3},a j
> 0} = 2. In addition, all

the other entries of OC1 is 0, since there is no other pattern for the 1-order transactions
graphs.

If k = 2, the calculation of the transition matrix M2 is illustrated in Fig. 7.
Then the occurrence matrix OC2 can be calculated as follows . OC2

(2,1) = 1, since

|{a1, a2}| = 2 and
∑

a j∈A I{M1{a1,a2},a j
> 0} = 1. OC2

(1,1) = 1, since |{a3}| = 1 and
∑

a j∈A I{M1{a1},a j
> 0} = 1. All the other entries of OC2 is 0.
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The dimension of occurrence matrices may be different for different k-order, and
different transactions. However, occurrence matrices of unified size are required for
formatting the feature vector of the same size, so that the features can be fed inmachine
learning based prediction models. According to literature (Akcora et al. 2018), nearly
97.57% transactions have the inputs and outputs sized no greater than 20. Therefore,
for the less than 3% left transactions, whose number of inputs or outputs is greater
than 20, we manually set number as 20. The k-order occurrence matrix OCk now can
be defined as Eq. (3).

OCk
(m,n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

Ai

I{|Ai | = m &
∑

a j∈A

I{Mk
Ai ,a j

> 0} = n}, m < 20, n < 20,

∑

Ai

I{|Ai | ≥ 20 &
∑

a j∈A

I{Mk
Ai ,a j

> 0} = n}, m = 20, n < 20,

∑

Ai

I{|Ai | = m &
∑

a j∈A

I{Mk
Ai ,a j

> 0} ≥ 20}, m < 20, n = 20,

∑

Ai

I{|Ai | ≥ 20 &
∑

a j∈A

I{Mk
Ai ,a j

> 0} ≥ 20}, m = 20, n = 20.

(3)

4 The proposed bitcoin prediction framework

When predicting the future price, we need to make fully use of historical information.
However, how much history should be taken into account is a challenging problem.
Specifically, incorporatingmore features from further history does not necessary bring
more accuracy prediction results, sometimes even damage the prediction. We demon-
strate that this situation exists in Bitcoin Prediction Task in next section. There is no
such a fitted length for historical window where the features are extracted can produce
consistently best performance. It is challenging to pick a suitable length of historywin-
dow where features are extracted, since neither of these models can maintain highest
accuracy in prediction.

In this paper, instead of using fixed length of history, We propose Multi-Window
Prediction Framework, which creates submodels to learn different patterns from dif-
ferent historical periods (window) and integrate all the predictions from submodels as
final prediction results.

Figure 8 shows the overview of proposed theMulti-Window Prediction Framework.
M1 to Ms are s submodels that are trained separately at different length of history
window. In this paper, we consider the granularity of timestamp as a day. Specifically,
M1 is a machine learning model trained by the subgraph features obtained from past
1 day, and M2 is another machine learning model trained by the features obtained
from past 2 days. After all submodels are trained, to make price prediction for a
specific future time t ′ = t + �t (�t ≥ 0), each submodel is able to make separate
prediction, then an integrator is applied combine all the separate predictions into one
final prediction.
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Fig. 8 The overview of multi-window prediction framework

The accuracy of final prediction result apparently depends on the performance of
each submodel. Next, we describe how each submodel is trained andmake future price
prediction. In this paper, we predict the daily end trading price of bitcoin at financial
market. The end price of day t ′ is denoted as Pt ′ . Though it is more of intuition to
directly predict Pt ′ , we argue that it is more reasonable to predict the price difference
between Pt ′ and Pt−s , denoted as �P[t−s,t ′], and then calculate the predicted Pt as
P̂t = Pt−s+ ˆ�P[t−s,t ′]. The reasons are as following: 1) Since the history price Pt−s is
known, it should be considered to improve the prediction while traditional way ignores
this; 2) The features or patterns occurred during [t − s, t] represent the characteristics
only during [t − s, t] in bitcoin market, and those characteristics reflects the reason of
price change not the exact price. Therefore, it ismore viable to use the obtained features
to understand the price change rather than the exact price. In this paperwe construct the
data sample pairs for model training and testing as (x, y), where x is the feature vector
extracted from history period [t − s, t], and y = �P[t−s,t ′] = Pt ′ − Pt−s . Please note
that each submodel will be retrained if it aims to predict different future time since the
manner of patterns influencing future price may be different for different future time.
We denote the length of future time to be predicted as h = t ′ − (t − s) ≥ s, which is
also called prediction horizon. Figure 9 illustrates several examples of the parameters
setting for submodels tomake prediction for different future time. In Fig. 9a, submodel
M1 takes features from [t−1, t], to predict�P[t−1,t], and further derive P̂t . Therefore
s = t − (t − 1) = 1 and h = t − (t − 1) = 1. In Fig. 9b, submodel M2 takes
feature from [t − 2, t], and also predicts �P[t−2,t]. Therefore s = t − (t − 2) = 2 and
h = t−(t−2) = 2. InFig. 9c,M2 tries to predict�P[t−2,t+1], hence s = t−(t−2) = 2
and h = (t + 1) − (t − 2) = 3.

As mentioned above, an integrator is applied to combine the results from each
submodel into the final results. The integrator can be any popular aggregation function
such as Min, Max or Average. We define the integrator as a simple linear function that
assigns different weights to each submodels, which given by following equation:

P̂t ′ = r1 ∗ P̂t ′
1 + r2 ∗ P̂t ′

2 + · · · + rs ∗ P̂t ′
s

(4)
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(a)

(b)

(c)

Fig. 9 Illustration of settings for different submodels on different prediction task

where r1 + r2 + · · · + rs = 1.
LetWi be the list of weights in the orderWi = [r1, r2, r3, . . . , ri ]where 0 ≥ i ≤ s.

Initially, when the historical window size is 1, that only submodel M1 is enabled to
make the prediction, we define W1 = [r1] = [1.0]. As the historical window size
increases and more submodels are enabled, Wi is defined as Eq. (5):
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Wi [k] = Wi−1[k] (0 < k < i − 1)

Wi [i − 1] = Wi−1[i − 1] ∗ α

Wi [i] = Wi−1[i − 1] ∗ (1 − α)

(5)

where α is the decay factor of weights. Obviously Eq. (5) keeps the property that∑
r j∈Wi

r j = 1 for i > 0. α makes the submodel that trained on further history
windows has less weights contributing to the final results, which is consistent to the
intuition that further history has less impact on the future price, especially for the
bitcoin market (Georgoula et al. 2015).

5 Experimental evaluations

In this section, we evaluate the effectiveness of proposed k-order transaction subgraph
patterns and the Multi-Window Prediction Framework.

5.1 Data preparation

To conduct the bitcoin price prediction task, the Bitcoin blockchain history data is
downloaded fromGoogle Bigquery public dataset crypto_bitcoin.1 The bitcoin daily
closing price history data is provided by Coindesk.2

We select 3 intervals for the experiments.

– Interval 1: From August 19th, 2013 to July 19th, 2016. This interval has 1065
days, training samples are generated from the first 852 (80%) days, and testing
samples are generated from the left 213 (20%) days.

– Interval 2: From April 1st, 2013 to April 1st, 2017. This interval has 1461 days,
training samples are generated from the first 1022 (70%) days, and testing samples
are generated from the left 439 (30%) days.

– Year 2017: From January 1st, 2017 to December 31st, 2017. This interval has 365
days, training samples are generated from the first 292 (80%) days, and testing
samples are generated from the left 73 (20%) days. This Interval is for demon-
strating short term prediction performance with much less training samples.

We adopt two intervals, namely interval 1 and interval 2, and the training/testing
ratio settings as the same ones in literature (Mallqui and Fernandes 2019), to create a
fair comparison in next sections. The bitcoin price of interval 1, interval 2 and Year
2017 is presented in Fig. 10a–c, respectively. It is possible to observe, that the bitcoin
prices show a high volatility, which indicates that the nature of the bitcoin can hardly
be intuitively discovered , therefore the features designedmanuallymay be ineffective.

To evaluate the price prediction accuracy,MeanAbsolute PercentageError (MAPE)
is adopted to show the difference between predicted prices and real prices. TheMAPE
is defined as MAPE = 1

N

∑N
i=1

| p̂i−pi |
pi

∈ [0,+∞), where p̂i is the predicted bit-

1 Dataset ID is bigquery-public-data: crypto_bitcoin at https://cloud.google.com/bigquery.
2 https://www.coindesk.com/.
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(a) (b)

(c)

Fig. 10 Bitcoin price at different test intervals

coin price, while pi is the real price. Obviously, lower MAPE values indicate better
prediction accuracy.

Table 1 illustrates how the data samples are generated for training submodels M1
and M2 during a given period. One can easily derive the settings to other submodel
Ms . After generating all the data samples, the training and testing samples are divided
without shuffle according to the ration specified for each dataset described above.
All experiments in this paper are done in Python 3.7 at a laptop with Intel Core i7
10875h, 32GB memory and 512G storage. The Neural Network model in experiment
is executed with CUDA 11.7 on a RTX 2080 Ti Max-Q graphic card.

5.2 Performance of difference submodel

Tables 3 and 4 show the results of each submodel, M1 to M4, adopts the same training
strategies while using two different predictionmodel, namely Support VectorMachine
(SVM) and full connected Neural Network (NN) respectively. The detailed model
settings are presented in Table 2. The only difference of submodels (M1 to M4) in
Tables 3 and 4 is the length of historical windowwhen calculating the k-order subgraph
features. We set k = 2 in all experiments in this article. From the tables, we can
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Table 2 The model settings in experiments

Model name SVM Neural network

Package sklearn.svm.SVR Keras

Parameters Kernal= rbf Gamma=0.01 C=10 Layers: [Inputs,128,64,32,16,1] Activation
Function: tanh epoch=3 k_fold=2
optimizer= ‘rmsprop’ loss function=MSE

conclude that including more historical information with bigger s in submodels does
not necessarily mean better submodel performance in terms of MAPE. For example in
Table 3, M2 at h = 2 results in higher MAPE than M1 under Interval 1 and Interval 2,
even thoughM2 takes onemore day history information into account. One can identify
more similar such cases in Table 4. Therefore it is expected to achieve higher MAPE
by taking advantages of different model. By the way, NN model-based prediction can
outperform SVM slightly in some cases, such as h = 4 in Interval 1, and h = 2, 4 in
Year 2017, but the margin is not significant.

5.3 Evaluation of˛ andmulti-window prediction framework

Figure 11 shows how the α affect the final prediction of the proposed Multi-Window
Prediction Framework. M1 means only the submodel M1 is adopted, M1 ∼ M2 means
integrator combines the results from both submodels M1 and M2, M1 ∼ M3 means
combining submodels M1, M2 and M3, and so on. For both SVM-based model and
NN-based model, when α > 0.7 in Interval 1, and α > 0.75 in Interval 2, there
is at least one combined model outperforms the submodel M1. This demonstrates
that the proposed Multi-Window Prediction Framework can successfully take advan-
tages from submodels and boost the accuracy. Specifically, When α = 0.85 the
multi-window prediction framework can achieve the most accurate prediction with
lowest MAPE value for both SVM-based and NN-based model in both Interval 1 and
Interval 2.

Table 5 shows results of multi-window prediction framework for predict next day
bitcoin closing price where α = 0.85 and h = 1. We first let all submodels trained
separately and make prediction on the same testing days. Then the integrator will
combine the results from submodels into the final results. Please note h = 1 here
means to predict the next-day price, for each submodel the settings for s and hmay vary
according to Fig. 9 tomake thempredict the same days. In the table,M1 ∼ M4 achieves
lowest MAPE values for both Interval 1 and Interval 2. Therefore we can conclude
that for predicting next day price, integrating 4 submodels with the longest history
window size s = 4 is enough for our proposed multi-window prediction framework.
The results also verified the intuition that further transaction history impacts less to the
future price, which also consistent to the high volatility of bitcoin price. In addition,
M1 is not related to α, but M1 adopting neural network model shows fluctuating
MAPE in both Interval 1 and Interval 2, this is because of the instability of neural
networks.
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(a) (b)

(d)(c)

Fig. 11 MAPE of multi-window prediction framework when combining different submodels and alpha in
interval 1 and interval 2 (h = 1)

Table 5 MAPE of multi-window prediction framework when combining different submodels (SVM, α =
0.85, h = 1)

Submodels integrated Interval 1 (%) Interval 2 (%)

M1 1.75 1.74

M1∼M2 1.70 1.73

M1∼M3 1.70 1.72

M1∼M4 1.69 1.72

M1∼M5 1.70 1.72

Mallqui and Fernandes (2019)-SVM 1.91 1.81

The bold indicates lowest MAPE achieved by least number of models

5.4 Comparison with baseline

Here, we compare our proposed framework with a state-of-art work, namely (Mallqui
and Fernandes 2019) where similar next-day bitcoin price prediction task is studied.
Mallqui and Fernandes (2019) considers both the factors from Bitcoin blockchain,

123



Journal of Combinatorial Optimization (2023) 45 :4 Page 21 of 24 4

Table 6 MAPE of
multi-window prediction
framework (M1 ∼ M4, SVM, α
= 0.85)

h Interval 1 (%) Interval 2 (%)

1 1.69 1.73

2 3.87 3.95

3 5.20 5.14

4 6.22 6.24

5 6.59 6.56

including history price, volume of trades and financial indicators showing current
financial market status such as the Gold price and Nasdaq price. Though multiple
machine learning methods are adopted such as regular neural network, regressional
neural network and support vector machine (SVM), the SVM regression model
presents the best performance in their work. We denoted this best model as Mal-
lqui and Fernandes (2019)-SVM and adopt it for comparison. The results of Mallqui
and Fernandes (2019)-SVM are directly taken from their paper since we both conduct
the same prediction task on the same intervals. The values are shown at the last line in
Table 5. We can observe that both M1 only and combined models outperformMallqui
and Fernandes (2019)-SVM. Especially, M1 ∼ M4 achieves 11.5% and 5.0% lower
MAPE values than Mallqui and Fernandes (2019)-SVM in Interval 1 and Interval 2
respectively.

5.5 Prediction for different future time

Table 6 shows how the Multi-Window Prediction Framework preforms for predict-
ing different future time. Comparing Tables 6 with 3, though M1 ∼ M4 obtained
best prediction accuracy for predicting future time h = 1 among any individual sub-
model, it can not outperform M1 for any other future time h > 1. This indicates
that when predicting further future (later than 1 day), introducing more history fea-
tures into the prediction does not benefit Multi-Window Prediction Framework. This
also demonstrates it is extremely hard to predict more than 2-days future price of
bitcoin.

6 Conclusion

In this paper, we proposed to understand bitcoin price change though mining the
patterns in transactions in Bitcoin blockchain. We first proposed to use transaction
graph to represent the relations among transactions. Then k-order transaction graphs
is proposed to encode the transaction pattern. Machine learning-based Multi-Window
Prediction Framework is further developed to predict bitcoin price fed with k-order
transaction graph features, which is able to capture the patterns from multiple his-
tory periods by adjusting the history window. Extensive experiments are conducted
to demonstrate the advantage of taking multiple history periods into account. The
proposed Multi-Window Prediction Framework also outperforms recent state-of-art
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method on the same intervals, demonstrating the effectiveness of mining the features
from transaction graph patterns.
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